[bis13] M. Bishof, X. Zhang, M. J. Martin, and J. Ye. Optical spectrum analyzer with quantum-limited noise floor. Phys. Rev. Lett. 111, 093604 (2013)
[blo14] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley & J. Ye. An optical lattice clock with accuracy and stability at the 10-18 level. Nature, 506, 71–75 (2014)
[boh14] J. G. Bohnet, K. C. Cox, M. A. Norcia, J. M. Weiner, Z. Chen & J. K. Thompson. Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit. Nature Photonics 8, 731–736 (2014)
[boh16] J.G. Bohnet, B.C. Sawyer, J.W. Britton, M.L. Wall, A.M. Rey and J.J. Bollinger, Quantum spin dynamics and entanglement generation with hundreds of trapped ions, Science 352, 1297 (2016)
[che12] Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland & J. K. Thompson. A steady-state superradiant laser with less than one intracavity photon, Nature  484, 78 (2012)
[cho10] C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, Optical Clocks and Relativity. Science 329, 1630-1633 (2010)
[cox16] K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson. Deterministic Squeezed States with Collective Measurements and Feedback. Phys Rev Lett. 116, 093602 (2016)
[hos16] O. Hosten, N. J. Engelsen, R. Krishnakumar & M. A. Kasevich. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505 (2016)
[kau17] H. Kaufmann, T. Ruster, C. T. Schmiegelow, M. A. Luda, V. Kaushal, J. Schulz, D. von Lindenfels, F. Schmidt-Kaler, U. G. Poschinger. Scalable creation of long-lived multipartite entanglement. Phys. Rev. Lett. 119, 150503 (2017)
[kau17a] H. Kaufmann, T. Ruster, C. T. Schmiegelow, M. A. Luda, V. Kaushal, J. Schulz, D. von Lindenfels, F. Schmidt-Kaler, and U. G. Poschinger. Fast ion swapping for quantum-information processing. Phys. Rev. A 95, 052319 (2017)
[kes12] T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photonics, 6, 687–692 (2012)
[lei05]  D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland. Creation of a six-atom ‘Schrödinger cat’ state. Nature, 438 639 (2005)
[let13] R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M. Abgrall, M. Gurov, P. Rosenbusch, D. G. Rovera, B. Nagórny, R. Gartman, P. G. Westergaard, M. E. Tobar, M. Lours, G. Santarelli, A. Clairon, S. Bize, P. Laurent, P. Lemonde & J. Lodewyck. Experimental realization of an optical second with strontium lattice clocks. Nature Communications, 4, 2109 (2013)
[lid98] D. A. Lidar, I. L. Chuang, and K. B. Whaley. Decoherence-Free Subspaces for Quantum Computation. Phys. Rev. Lett. 81, 2594-2597 (1998)
[lou10] A. Louchet-Chauvet, J. Appel, J. J Renema, D. Oblak, N. Kjaergaard and E. S Polzik. Entanglement-assisted atomic clock beyond the projection noise limit. New J. Phys. 12 065032 (2010)
[mar11] M. J. Martin, D. Meiser, J. W. Thomsen, J. Ye, and M. J. Holland, Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization, Phys. Rev. A 84, 063813 (2011)
[mat17] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr. 1.5 µm lasers with sub 10 mHz linewidth, Phys. Rev. Lett. 118, 263202 (2017)
[mei08] D Meiser, J. Ye and M J Holland. Spin squeezing in optical lattice clocks via lattice-based QND measurements. New J. Phys. 10 073014 (2008)
[mei09] D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, Prospects for a Millihertz-Linewidth Laser, Phys. Rev. Lett. 102, 163601 (2009)
[mon11] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Hänsel, M. Hennrich, and R. Blatt. 14-Qubit Entanglement: Creation and Coherence. Phys. Rev. Lett. 106, 130506 (2011)
[Nie08] A. E. B. Nielsen, K. Mølmer. Atomic spin squeezing in an optical cavity. Phys. Rev. A 77, 063811 (2008)
[nor16] M. A. Norcia and J. K. Thompson. Cold-strontium laser in the superradiant crossover regime. Phys. Rev. X, 6, 011025 (2016)
[pez18] L. Pezzè, A. Smerzi, M.K. Oberthaler, R. Schmied and P. Treutlein. Quantum Metrology with Nonclassical States of Atomic Ensembles. Rev. Mod. Phys. 90, 035005 (2018)
[roo06] C. F. Roos, M. Chwalla, K. Kim, M. Riebe, R. Blatt. ‘Designer atoms’ for quantum metrology. Nature 443, 316-319 (2006)
[rus17] T. Ruster, H. Kaufmann, M. A. Luda, V. Kaushal, C. T. Schmiegelow, F. Schmidt-Kaler, U. G. Poschinger. Entanglement-based dc magnetometry with separated ions. Phys. Rev. X 7, 031050 (2017)
[sch17] S. A. Schäffer, B. T. R. Christensen, M. R. Henriksen, and J. W. Thomsen, Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization, Phys. Rev. A 96, 013847 (2017)
[sha17]  R. Shaniv, T. Manovitz, Y. Shapira, N. Akerman, and R. Ozeri. Heisenberg-limited Rabi spectroscopy. Phys. Rev. Lett. 120, 243603 (2018)
[ush15] I. Ushijima, M. Takamoto, M. Das, T. Ohkubo & H. Katori, Cryogenic optical lattice clocks. Nature Photonics, 9, 185–189 (2015)
[wes15] P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and J. W. Thomsen.  Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity. Phys. Rev. Lett. 114, 093002 (2015)
[win17] M. N. Winchester, M. A. Norcia, J. R. K. Cline, and J. K. Thompson. Magnetically-Induced Optical Transparency on a Forbidden Transition in Strontium for Cavity-Enhanced Spectroscopy. Phys. Rev. Lett., 118 263601 (2017)