
Metrology for Earth 
Observation and Climate

Challenge
Quality assessments of land cover maps are performed by comparing land 
cover maps with reference datasets. Such comparisons are summarised 
in a form of a confusion matrix (Figure 1). These provide information 
about overall map quality and the quality of classification of individual 
land cover classes, but no information about how the quality of the map 
varies spatially. Yet, the spatial variability of LC maps quality can be large 
[6]. Proposed methods for obtaining spatially-explicit understandings of 
map quality rely on interpolation techniques, which allow the prediction 

of map quality at unseen locations [7]; other methods use the probability 
output of a classifier used for the production of a LC map [8]. The latter 
method is gaining a lot of attention, however, this method does not 
take into account that the input data, which is fed to the classifier, has 
associated uncertainties. To account for such uncertainties, these should 
be propagated using the law of propagation of uncertainty [9] through the 
entire processing chain used to create an LC map. This would represent a 
metrologically-rigorous approach to obtaining per-pixel uncertainties of an 
LC map. The framework for applying the law of propagation of uncertainty 

Introduction
Land cover is one of 54 Essential Climate Variables (ECVs) selected by the World Meteorological Organization (WMO) [1]. Land 
cover (LC), specifically land cover change, simultaneously affects climate and is affected by it [2]. Land cover change affects climate 
biophysically – by altering reflective properties of land surface and evapotranspiration, and biogeochemically – by changing carbon 
stocks. Past research suggests that, since pre-industrial times, the biophysical mechanism had a net cooling effect on climate; 
whereas the biogeochemical mechanism had a net warming effect [3]. Climate change, in turn, has amplified land cover changes 
through intensification of droughts, rainfall, etc. [4].  Land cover can also have a mitigation role: several land-based solutions such as 
reforestation, and peatland restoration can help reduce GHG emissions or increase terrestrial carbon uptake [5].

Land cover maps provide a means to monitor and manage land cover conditions, and parametrise climate models and other 
environmental models. The quality of land cover maps is a topic of ongoing research, as widely adopted quality assessment practices 
are known to have limitations. 

Bringing metrology to land cover mapping

A detailed zoom on the Sine Saloum River Delta in Senegal dominated by mangroves  https://vito.be/en/news/release-10-m-worldcover-map
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to Earth Observation data has been previously demonstrated in FIDUCEO 
(Fidelity and uncertainty in climate data records from Earth Observations) 
project [10].

Solution
Land Cover maps are usually produced by applying a machine learning 
classification algorithm, such as Random Forest (RF) or Artificial Neural 
Network (ANN), to surface reflectance measurements—often referred to 
as Bottom-of-Atmosphere (BOA) reflectance. This is because reflective 
properties of land surfaces depend on land cover surface type (forest, 
crop, bare soil, etc.). If a classification algorithm is supervised, which is 
often the case, it needs to be trained (developed) based on a training 
dataset (TD). The training dataset consists of a set of pixels (and 
corresponding reflectance measurements) for which the land cover class 
is assumed to be known. Once a classifier is trained, it is applied to the 
entire scene.

BOA reflectance is a derived product, produced by atmospheric 
correction of Top-of-Atmosphere (TOA) radiance measurements. 
Atmospheric correction is necessary as Earth’s atmosphere and its 
constituents (e.g. aerosols, water vapour, etc.) significantly affect radiance 
signals travelling through it. TOA radiance is a derived product as well, 
produced by radiometric and spectral corrections of raw digital numbers 
(DN) measured by a space-borne sensor. This full processing chain – from 
raw digital numbers to land cover map – is shown in Figure 2.

 

No measurement/model is perfect; at each step of this processing 
chain there will be various effects with associated uncertainties, 
which will contribute to the uncertainty of the measurand – the 
land cover map (LCM). The uncertainty tree diagram shown in Figure 
3 offers a visual representation of how these various sources of 
uncertainty propagate.

The pink branch shows effects that lead to the uncertainties associated 
with the conversion of digital numbers to TOA radiance; the green 
branch shows effects that lead to the uncertainties associated with 
atmospheric correction of TOA radiance to BOA reflectance; the orange 
branch shows effects that lead to the uncertainties associated with the 
representation of the scene with a training dataset; and the red branch 
shows effects associated with independent labelled data used in the 
training dataset.

A few studies  tried to address uncertainties associated with some of 
the effects highlighted in Figure 3. Radiometric uncertainties were 
propagated to the Sentinel-2 Scene Classification product (without 
accounting for uncertainties associated with atmospheric correction 
and classifier) in [11]; uncertainties associated with training datasets were 
reviewed in [12]. This shows an increasing attention of researchers to 
this topic. 

Outcome
In June 2023, the importance of developing uncertainty propagation 
methods for land cover mapping algorithms was highlighted by the 
Biosphere Monitoring Group at the Metrology for Climate Action 
workshop organised by the Bureau International des Poids et Mesures 
(BIPM) and the World Meteorological Organization (WMO) [13].  
As shown above, some efforts to estimate uncertainty sources 
necessary for developing uncertainty propagation frameworks 
requested by the BIPM and WMO have already been undertaken but 
further efforts are required to build a comprehensive uncertainty 
budget. Here we present an uncertainty tree diagram, which helps to 
visualise different sources of uncertainty and understand the gaps in 
the current knowledge. This uncertainty tree only identifies uncertainties 
associated with a map produced based on a single satellite image, more 
uncertainty sources have to be accounted for when multiple satellite 
images are used.

It is important to note that land cover maps are usually not a goal in 
themselves but an important input in several applications – climate 
and carbon flux models, hydrologic models, biodiversity and food 
security studies, etc. These downstream applications have been shown 
quite sensitive to the quality of land cover maps [14], [15], [16]. Improved 
estimations of uncertainties associated with land cover maps produced 
in a metrologically-rigorous way would help to enhance the quality of 
these downstream products.

Figure 1. An example of confusion matrix. A, B, C, D are four land cover classes. Adapted from Strahler et al. [7]

Figure 2. An example of production chain of a land cover map based on Earth Observation data (i.e. L0 Raw Digital Numbers are measured by a spaceborne sensor).  
Adapted from Thompson et al. [17]  

(NB: L2b Geophysical Map is replaced by ESA WorldCover map)



For more information visit www.meteoc.org
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Figure 3. Uncertainty tree diagram for land cover classification (assuming that LC map is produced based on a satellite image and Random Forest as a classifier) 
(L
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From 2011 to 2023, the NPL-coordinated MetEOC series of projects — supported by EURAMET’s European Metrology Research Programme (EMPR) 
and European Metrology Programme for Innovation and Research (EMPIR) — encouraged collaboration between European National Metrology 
Institutes (NMIs) and partners in industry or academia. MetEOC combined ground, atmosphere, and space-based measurements to develop 
metrology tools and frameworks to support climate observation systems capable of increasing understanding of the drivers of climate change.
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