

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Adapting the CISPR 16-1-1 standard for power quality measurements

Stefano Lodetti, NPL, UK

SupraEMI M18 Workshop, November 2020

Motivation

IEC 61000-2-2: grid compatibility levels

4.12 Voltage distortion in differential mode from 9 kHz to 150 kHz

4.12.1 General

In this document, voltage distortion from 9 kHz to 150 kHz is considered in relation to long-term effects, i.e. for a duration of 10 min or longer.

The compatibility levels for voltage distortion in differential mode from 9 kHz to 150 kHz, given in 4.12.2 and 4.12.3, are related to disturbance levels between any phase conductor and the neutral conductor measured with a quasi-peak detector and with a bandwidth of 200 Hz in accordance with CISPR 16-1-1.

Is CISPR 16-1-1 standard suitable for grid measurements?

Content

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

CISPR 16-1-1 Overview

- Purpose
 - Instrument characteristics and methods for the 9-150 kHz range
 - Emissions from equipment under test (EUT), in laboratory setting
 - Objective: protection of radio transmission from interference
 - Not intended for power quality grid measurements

- Measurement method
 - Classically: analogue super-heterodyne EMI receivers (very slow, gaps)
 - Recently: emulated by digital FFT-based instruments (fast, gapless)
 - Black-box approach set of compliance tests

CISPR 16-1-1 Digital implementation

Main stages of an FFT-based implementation:

Minimum accuracy requirements

cf. \pm 5 % in IEC 61000-4-7

Reproducibility Motivation

This could compromise the **reproducibility**

- How big are the differences in results, for the same input?
- Is it a reproducibility issue?

11 November 2020

Computational cost

- Comparison of total number of operations for 200 ms of input signal
- Assumption: 95% overlap and 100 Hz frequency step in digital CISPR 16 implementation

Implementation method	IEC 61000-4-7 Annex B (2-9 kHz)	CISPR 16
Sampling frequency	327.68 kHz	409.6 kHz
Window length	200 ms	20 ms
Single FFT size	65,536	8,192
Number of FFTs per 200 ms	1	181
Number of final frequency components	710	1410
Number of operations Number of operations for IEC Method	1	22
FFT stage	82%	72%

- Digital CISPR 16 implementation exceeds IEC 61000-4-7 Annex B by factor > 20
- Drivers:
 - overlap increases number of FFTs,
 - post-processing number of parallel quasi-peak detectors

Concerns in adapting the CISPR 16 method to grid measurements

Reproducibility

• Different implementations give significantly different results

Ø

Existing tolerances >10% are very permissive

• 5-10% is the target below 2 kHz (cf. IEC 61000-4-7 for harmonics)

Computational effort

• Higher than IEC 61000-4-7 Annex B

Other concerns

- Quasi-peak values: for protection of radio transmission. Are they reflective of PQ interference mechanisms?
- Measurement time and aggregation strategies need to be defined

research and innovation programme and the EMPIR Participating States

Thank you