

Interlaboratory compatibility of δ^{13} C-VPDB scale realisation

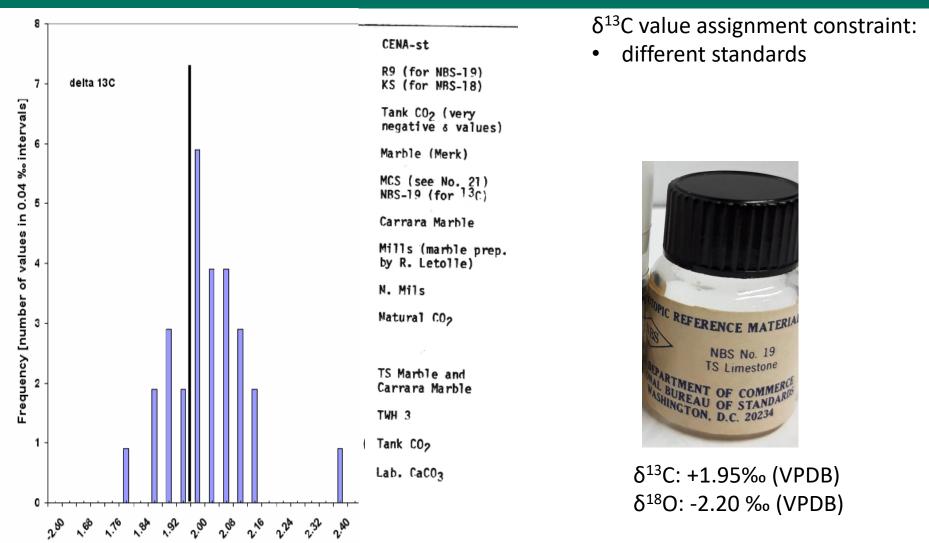
<u>H. Moossen</u>, F. Camin, B Krajnc, P.M. Steur, I. von Rein, H.A.J Meijer

GGMT 2022

MAX-PLANCK-GESELLSCH/

Importance of δ^{13} C-CO₂ value assignment

 δ^{13} C-CO₂ VPDB scale realizations directly impact the GAW-WMO compatibility goals for measurements of atmospheric CO₂ and CH₄.

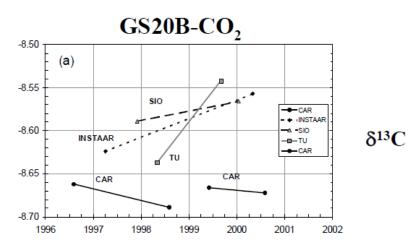

Where do we stand on laboratory compatibility when analysing international standards?

Where are the constraints on laboratory intercomparability?

Component	Network compatibility goal ¹	Extended network	
		compatibility goal ²	
$\delta^{13}C$ - CO_2	0.01‰	0.1‰	
δ ¹³ C-CH ₄	0.02‰	0.2‰	GAW-WMO (2020)
$\bigcap \bigcirc$			

Interlab comparability of δ^{13} C-CO₂ values

Data from IAEA "Advisory Group Meeting on Stable Isotope Reference Samples for Geochemical and Hydrological Investigation" R. Gofiantini, 1984; Graphs made by Willi Brand



Interlab comparability of δ^{13} C-CO₂ values

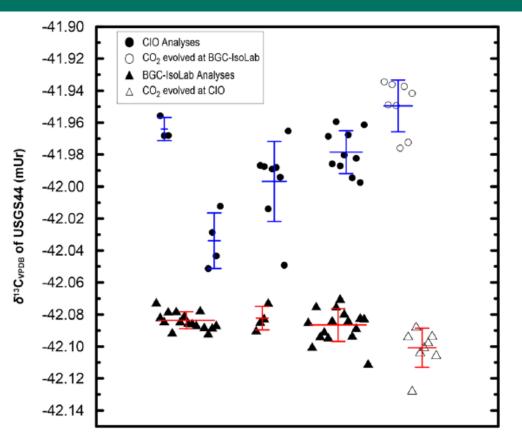
 $\delta^{13}C_{\text{VPDB-CO2}}$ value assignment comparability is constrained by:

- phosphoric acid reaction
- scale contraction

CLASSIC Project, WMO-GAW Report 148, **2003**

Reported isotopic composition of the pure CO_2 gas in canister GS20B: (a) $\delta^{13}C_{VPDB-CO2}$, (b) $\delta^{18}O_{VPDB-CO2}$.

Verkouteren & Klinedinst, NIST special publication **2004**


Average of 6 laboratories

Average(std dev)

δ ¹³ C(RM8562)	-3.72(0.04)	
δ ¹³ C(RM8563)	-41.57(0.09)	
δ ¹³ C(RM8564)	-10.45(0.03)	
δ ¹³ C(NBS18)	-5.01(0.02)	
δ ¹³ C(IAEA-CO9)	-47.38(0.14)	
δ13C(LSVEC)	-46.57 (0.12)	

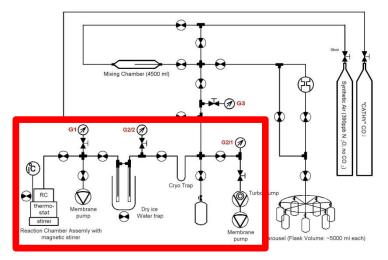
Interlab comparability of δ^{13} C-CO₂ values

 $\delta^{13}C_{\text{VPDB-CO2}}$ value assignment comparability is constrained by:

 scale contraction / instrumental factors

Samples analyzed between 2016 and 2019 at CIO and BGC-IsoLab

FIGURE 5Individual DI-IRMS $\delta^{13}C_{VPDB}$ measurements ofUSGS44 by BGC-IsoLab and CIO between 2016 and 2019. Values are
corrected for cross contaminationQi et


Qi et al., 2020

δ^{13} C-CO₂ measurments from CaCO₃ standards.

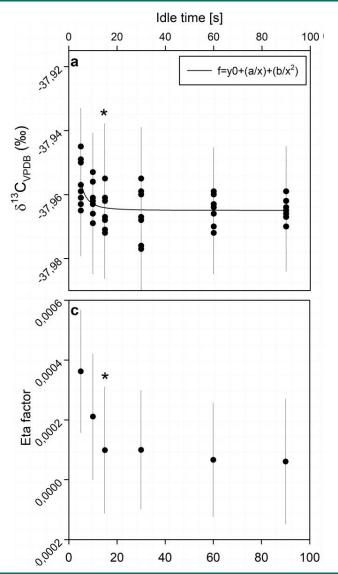
Measurement constraints:

$CaCO_3 + 2 H_3PO_4 \rightarrow$ Ca²⁺ + 2(H₂PO₄)⁻ + H₂O + CO₂

ARAMIS – <u>A</u>cid <u>R</u>eaction and <u>Air Mixing System</u>

20 µm Gold coating

New magnetic stirrer


1 Syntheses = one 300 ml Flask containing ~ 30 mbar CO_2 25°C, 24 hours

scale contraction instrumental factors

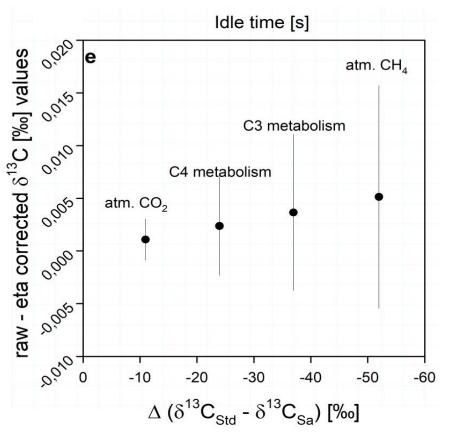
MAT 253 (Candira): Dual Inlet measurements

Scale contraction – BGC-IsoLab MAT253

standard idle time experiment to determine sample/reference gas cross-contamination.

cross-contamination leads to scale contraction

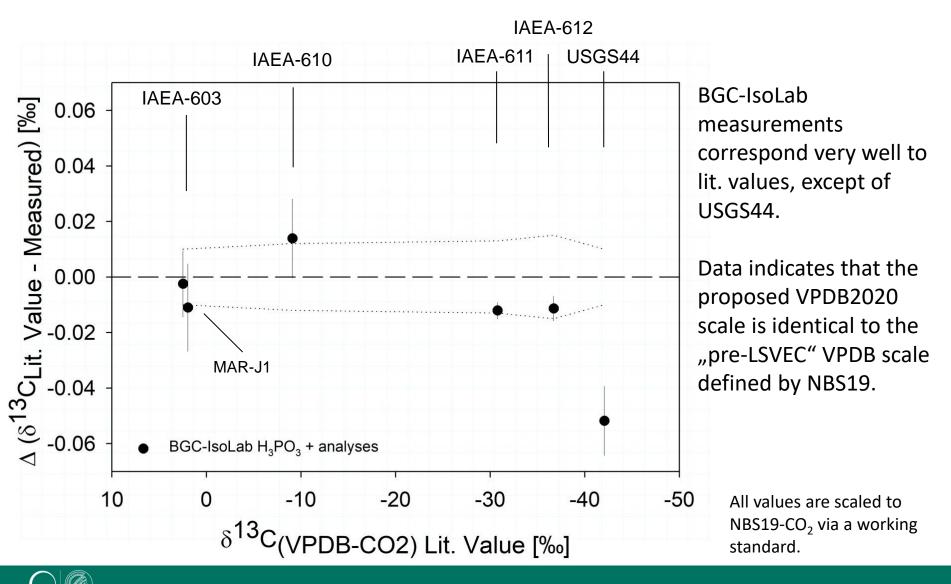
Sample/reference gas cross-contamination is subject to change with changing ion source conditions.


Idle time experiments 2021:Idle time experiments 2018: $\delta^{13}C_{\eta}$: 0.000097 ± 0.00021 $\delta^{13}C_{\eta}$: 0.00046 ± 0.0005Qi et al., (2020)

Cross-contamination changes with changing ion source conditions

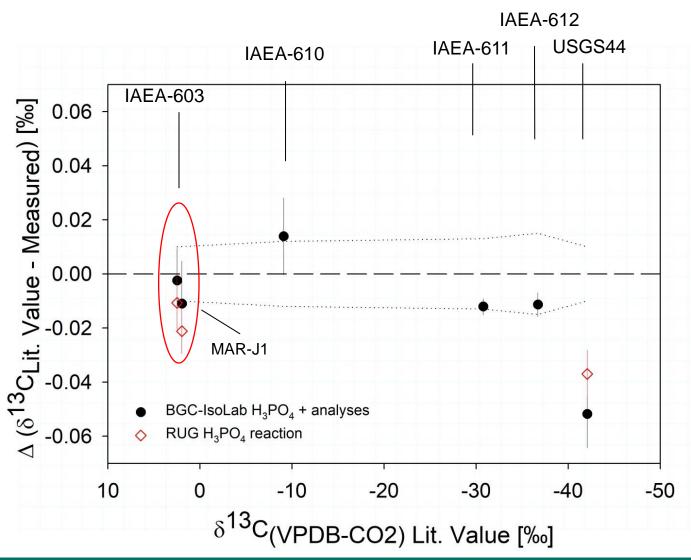
Scale contraction – BGC-IsoLab MAT253

The impact of the scale contraction correction increases with isotopic "distance" between sample and standard.


eta-correction is negligible for isotopic measurements of atmospheric CO₂

eta-correction can add significant uncertainty for isotopic measurements of atmospheric CH₄.

Impact of the scale contraction correction on different samples analysed against NBS19-CO $_2$.

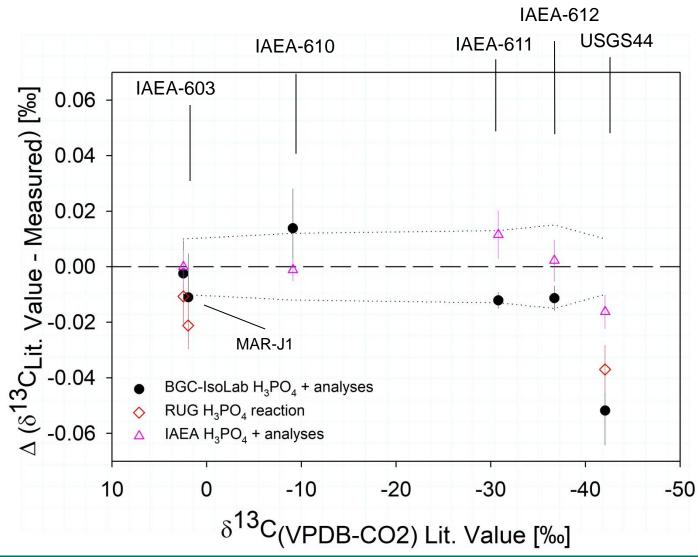

Realising the VPDB scale at BGC-IsoLab

MAX-PLANCK-INSTITUT

heiko.moossen@bgc-jena.mpg.de

Comparing H₃PO₄ reaction between BGC and RUG

The RUG and BGC-IsoLab phosphoric acid preparations are indistinguishable for IAEA-603 and MAR-J1-CO₂.


USGS44-CO₂ from RUG and BGC-IsoLab are isotopically distinct

Grain size issue?

All values are scaled to NBS19- CO_2 via a working standard.

Comparing IAEA and BGC-IsoLab VPDB scale realisations

IAEA and BGC-IsoLab scale realisation in good agreement over VPDB scale spanned by IAEA standards.

Larger offsets with increasing sample/standard isotopic difference.

USGS44 data suffers from larger variability

All values are scaled to NBS19-CO $_2$ via a working standard.

Conclusion and Outlook

Conclusion:

The CCL and IAEA $CaCO_3$ - CO_2 Data show good agreement on the VPDB- CO_2 scale defined by NBS19.

Scale revision, i.e. setting up a new scale may not be necessary.

Inter-laboratory comparability of VPDB scale realisation is still constrained by:

- phosphoric acid reaction
- instrument specific scale contraction
- (type of standard material) more USGS44 work necessary.

Recommendation:

- Continue collaboration between CCL and IAEA and further stakeholders where necessary.

Thank you.

