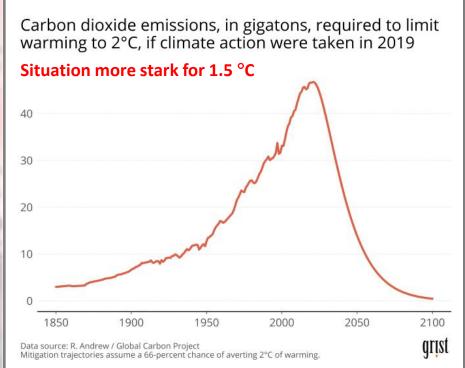


Report from SIRS and STELLAR

Isotope ratio Working Group Meeting

22nd April 2021 Paul Brewer



Climate Change

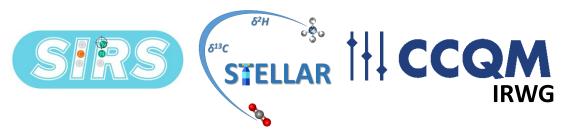
- Mathematical illustration pain brought on society by delaying climate action
- Constrained by a budget every year of over-emitting requires sharper curtailing in following years
- Taking action lowers the peak and makes for a more gentle decline over the rest of the century
- If emissions had peaked a little after the turn of the millennium, reductions of around 2 % annually
- But they're still rising...
- Annual reduction required now closer to 8 % (on par with lockdown emission decrease)

The importance of scientific intervention

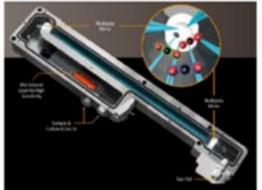
- Coronavirus curve shows what happens over time due to policy responses
- If communities limit virus spread and distribute incidence over time, hospitals not overwhelmed
- Climate mitigation curves tell a similar story but it is about more than health systems
- The steeper curve generated by delaying climate action overwhelms whole economies and imaginations (implement what it would take to cut emissions by, e.g. 20 % per year)

https://grist.org/climate/flatten-the-curve-coronavirus-climate-emissions/

Metrology for isotopes to underpin source apportionment


Why?

- To enable government to verify emissions (discriminate between natural and anthropogenic sources of greenhouse gases) requires information on isotopic composition
- No infrastructure to deliver gas reference materials for CO₂ and CH₄ with uncertainties to meet demand and underpin isotope ratio measurements


Why now?

- New measurement technologies and applications
- Changes in primary reference materials
- Conventional vs. absolute (SI traceable) measurements

NPL setting the international metrology agenda

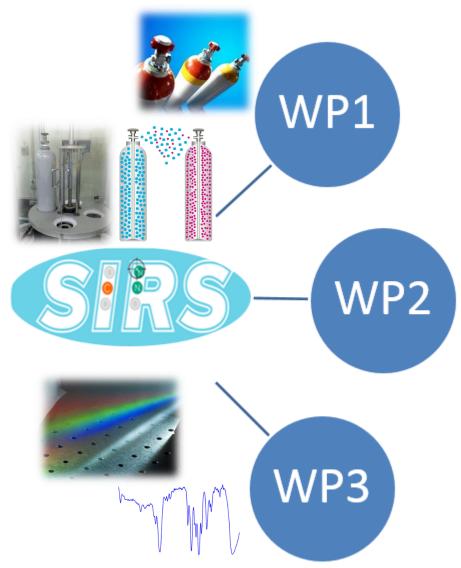
Metrology for isotopes to underpin source apportionment

Fundamental metrology

Initiate SI traceability of the international CO₂ isotope ratio scale by re-measuring the absolute isotope ratios by high-resolution gas-source isotope ratio mass spectrometry, combined with gravimetric mixing

Traceability

New mechanisms to disseminate and maintain continuity to the existing primary scale for CO_2 and CH_4


Enabling innovation

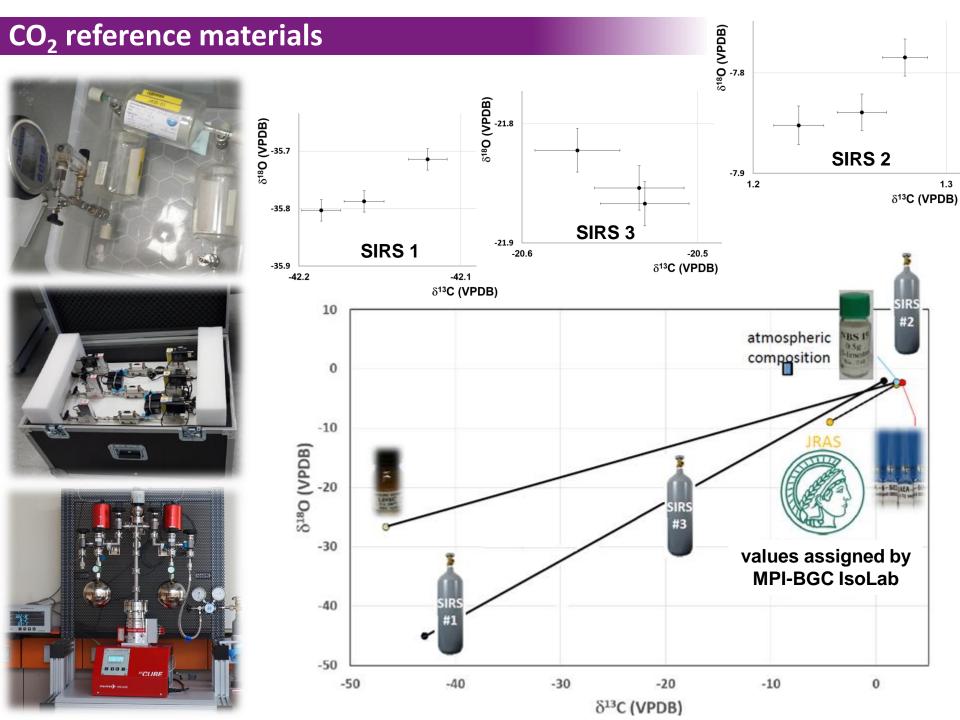
Provide reliable field-based measurements, develop new generation field-deployable optical spectroscopy, characterise uncertainty and traceability linked to isotopic measurements

Provide the scientific information to enable government to develop accurate emission inventories and models to challenge and inform new policy, improve abatement strategies and ensure government funding is directed more efficiently to achieve net zero

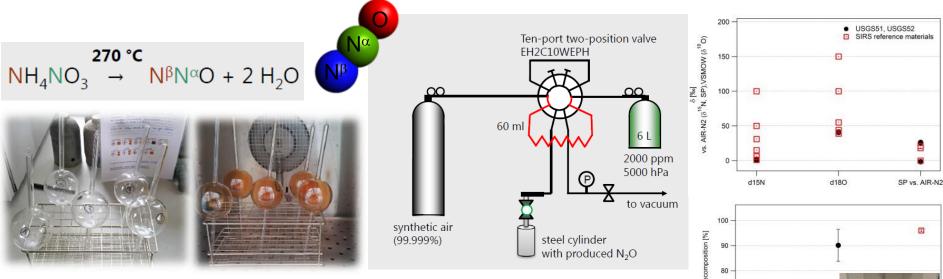
Objectives

Spectroscopic methods for isotope ratio measurements

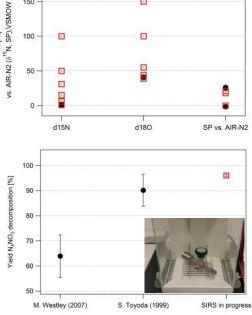
Comparison of methods

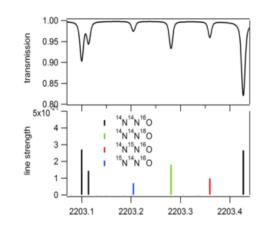

RMs pure CO₂ for δ^{13} C-CO₂ and δ^{18} O-CO₂ Static and dynamic RMs of CO₂ at 400 µmol mol⁻¹ Validation of RMs and comparisons (VPDB) Absolute measurements

Link δ^{15} N, δ^{18} O and 15 N site preference in N₂O to the international stable isotope ratio scales

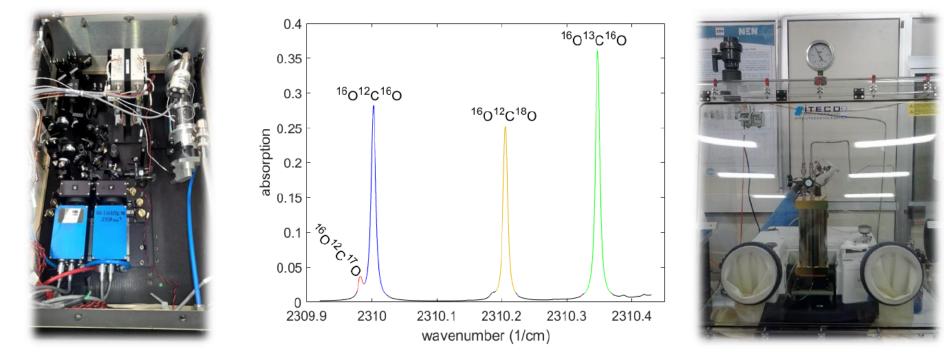

RMs for δ^{15} N, δ^{18} O and 15 N site preference in N₂O

Static and dynamic mixtures at 300 to 1000 nmol mol⁻¹ for instrument calibration


N₂O reference materials



- Technique developed to characterise N₂O for $\delta^{15}N$, δ^{18} O by IRMS
- Novel technique for N₂O SP achieves higher yield / . reproducibility
- 6 RMs prepared by spiking of commercial N₂O and ٠
- currently characterised for δ ¹⁵N, δ ¹⁸O, SP by IRMS and OIRS
- Static dilution system for N₂O RMs developed for ٠ instrument calibration



Spectroscopy

- Two IR laser based commercial isotope analysers for CO₂ have been tested and characterised
- Achieved precision on the level of 0.01 ‰ for δ^{13} C and δ^{18} O in air-CO₂ samples
- Investigation of matrix gas effect has been initiated to improve accuracy
- An FTIR based method for δ^{13} C-CO₂ determination in air-CO₂

- Construction of the field-deployable CO₂ isotope analyser for atmospheric measurements and isotope analyser for pure N₂O
- Commercial optical isotope analysers for N₂O have been characterised

From SIRS to STELLAR

	SIRS	STELLAR	BEYOND
CO ₂ reference materials (scale traceability)	Uncertainties 0.1 ‰ ($\delta^{13}\text{C-CO}_2$) and 0.5 ‰ ($\delta^{18}\text{O-CO}_2$)	Uncertainties 0.05 ‰ (δ^{13} C-CO ₂) and 0.1 ‰ (δ^{18} O-CO ₂)	Uncertainties 0.01 ‰ ($\delta^{13}\text{C-CO}_2$) and 0.05 ‰ ($\delta^{18}\text{O-CO}_2$)
CH ₄ reference materials (scale traceability)	-	Uncertainties 0.2 ‰ ($\delta^{13}\text{C-CH}_4)$ and 5 ‰ ($\delta^2\text{H-CH}_4)$	Uncertainties 0.02 ‰ ($\delta^{13}\text{C-CH}_4)$ and 1 ‰ ($\delta^2\text{H-CH}_4)$
N ₂ O reference materials (scale traceability)	1.0 ‰ ($\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta})$ and 0.5 ‰ ($\delta^{18}O)$		-
SI traceability	Re-measure the absolute CO2 isotope ratios	Uncertainties $0.1 \% (\delta^{13}$ C-CO ₂) and $0.1 \% (\delta^{18}$ O-CO ₂)	Uncertainties 0.01 ‰ (δ^{13} C-CO ₂) and 0.05 ‰ (δ^{18} O-CO ₂) Uncertainties 0.02 ‰ (δ^{13} C-CH ₄) and 1 ‰ (δ^{2} H-CH ₄)
Spectrocopic methods	$\begin{array}{l} Precision 0.1 \ensuremath{\%} \left(\delta^{13}C\text{-}CO_2 \mbox{ and } \delta^{18}O\text{-}CO_2 \right), N_2O \left(\delta^{15}N^{\alpha}, \delta^{15}N^{\beta} \mbox{ and } \delta^{18}O \right) \\ Precision N_2O \left(\delta^{15}N^{\alpha}, \delta^{15}N^{\beta} \mbox{ and } \delta^{18}O \right) \end{array}$	Precision 0.05 ‰ (گ ¹³ C-CO ₂ and گ ¹⁸ O-CO ₂) Precision 0.2 ‰ (گ ¹³ C-CH ₄) and 1 ‰ (گ ² H-CH ₄)	Precision 0.01‰ (گ ¹³ C-CO ₂ and گ ¹⁸ O-CO ₂) Precision 0.02‰ (گ ¹³ C-CH ₄) and 1‰ (گ ² H-CH ₄)

STELLAR: Stable Isotope Metrology to Enable Climate Action and Regulation

- To support governments to verify emissions need to discriminate between natural and anthropogenic sources of greenhouse gases
- Requires information on isotopic composition
- No infrastructure to deliver gas reference materials for CO₂ and CH₄ with uncertainties to meet demand and underpin isotope ratio measurements
- Address advances in spectroscopy and robustness of scale

