

Advancing optical isotope ratio spectroscopy for carbon dioxide and methane

EMPIR 19ENV05 'STELLAR' Work Package 3

Stakeholder meeting, 2021-02-26

J. Braden-Behrens, J. Nwaboh, O. Werhahn (PTB) K. Zeyer, J. Mohn (Empa), F. Steur (RUG), F. Rolle (INRIM)

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Materials Science and Technology

UNIVERSITY OF EASTERN FINLAND

university of groningen

Max-Planck-Institut für Biogeochemie

PB Relations within STELLAR

S13C

STELLAR

%

PB Optical isotope ratio spectroscopy (OIRS)

 $\frac{\text{line area isotope 1}}{\text{line area isotope 2}} | \text{sample/reference} \Rightarrow \begin{cases} \delta - \text{value (calibration vs. reference)} \\ \text{absolute ratio (from spectroscopic measurements)} \end{cases}$

2.

3.

 $\frac{\text{line area isotope 1}}{\text{line area isotope 2}} | \text{sample/reference} \Rightarrow \begin{cases} \delta - \text{value (calibration vs. reference)} \\ \text{absolute ratio (from spectroscopic measurements)} \end{cases}$

CRDS (VSL, PTB)

FTIR (INRIM, VSL, PTB)

direct laser absorption experiment

PB Objectives of WP3

By bringing together experts from gas metrology, spectroscopy, and isotope ratio measurements, we want to:

Develop, characterize and improve field-deployable spectroscopic methods and calibration approaches for measurements of

- δ^{13} C-CO₂ and δ^{18} O-CO₂ target precision: 0.05 ‰
- δ^{13} C-CH₄ and δ^{2} H-CH₄ target precisions: 0.2 ‰ and 1 ‰

Characterize methods and evaluate calibration approaches

Quantify and control sources of uncertainty Link OIRS results (isotopologue amount fractions) and δ scales Develop practical recommendations for the user community

Task 3.3

Field deployment of OIRS and demonstration of compatibility

PB Expected output

Tasks 3.1 and 3.2

Good practice guides for CO₂ and CH₄ OIRS:

- sample handling
- analytical procedures
- traceability
- uncertainty assessments

<u>Tasks 3.3</u>

Good practice guides OIRS for monitoring stations and close-to-source applications

- gas handling
- in-field compatibility (OIRS and IRMS)

All tasks

Input to WP4 'Creating impact':

- OIRS papers,
- conf. contr.
- input to standardisation committees (ISO, CCQM-IRWG, WMO, etc.)

PB Expected output

Tasks 3.1 and 3.2

Good practice guides for CO₂ and CH₄ OIRS: - sample handling

- analytical procedures
- tr2

cainty assessm

<u>Tasks 3.3</u>

Good practice guides OIRS for monitoring stations and close-to-source applications

- gas handling
- in-field compatibility
 (OIRS and IRMS)

All tasks

Input to WP4 'Creating impact':

- OIRS papers,
- conf. contr.
- input to standardisation committees (ISO, CCQM-IRWG, WMO, etc.)

and Berlin

Identified potential improvements

- Calibration routine
 - gases / cylinders
 - mathematics
 - procedures (e.g. continuous drift correction and gas handling)
- Instrument improvement
 - spectral line data
 - assessment of wavenumber axis
 - matrix effects
- 3. Gas sample conditions
 - T, p, flow rate

Improved OIRS for CO₂

Develop and improve measurement strategy: Drift correction

Continuous drift correction by alternation of sample measurements by working gas measurement:

All st. dev.	n=5		st. dev. n=5 n=10		10
in ‰	uncor	cor	uncor	cor	
r636	0.04	0.020	0.06	0.025	
r628	0.05	0.021	0.10	0.029	
r627	0.06	0.018	0.18	0.03	

Standard deviations of 5 and 10 sample aliquot measurements, without (uncor) and with (cor) drift correction.

11

CO2 analyzer at RUG (F. Steur)

Ongoing Activity

Improved OIRS for CO₂

Improved protocol for metrological characterization of OIRS

First steps are made towards a comparison of IRMS and OIRS measurements:

3 CO₂-in-air mixtures (provided by NPL and INRIM) will be measured by RUG (OIRS) and MPI-BGC (IRMS)

To exclude deviations due to sampling methods, flasks are filled with the reference gas ('sausage method'), first measured at RUG, then sent to MPI-BGC for measurement of the same flasks.

12

19ENV05 – STELLAR

2020-12-

Improved OIRS for CH₄

A3.2.1 (Deadline M3-30th Nov 2020) Version 10th Dec 2020

Authors: Joachim Mohn (Empa), Chris Rennick (NPL), Tim Arnold (NPL), Stefan Persijn (VSL), Javis Nwaboh (PTB), Olav Werhahn (PTB), Thomas Hausmaninger (VTT)

Epige, PTB, DFM and NPL, will identify (from literature and their existing knowledge) and report on key tactors, e.q. matix effects, spectral interferences, measurement exquence and calibration procedure, limiting the precision and accuracy of existing OIRS <u>applications</u> for DISC-CH4 and DiH-CH4. This activity will provide input to A32.2, A32.7 and A32.8.

EMPA (J. Mohn K. Zeyer)

National Metrology Institute STELLAR stakeholder meeting

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

2021-02-26

19ENV05 - STELLAR	2020-12-4		Hardware	Factors	Experiment	References
STELLAR		Precision	Spectrometer	Baseline / fringe changes Temperature, pressure changes Stability laser source / electronics Stability power supply etc.	Allan Werle variance	(Werle <i>et al.,</i> 1993; Werle, 2011)
Report on key factors limiting the precis	sion and accuracy of OIRS					
analyzers for δ ¹³ C-CH₄ and ŏD-CH₄ A3.2.1 (Deadline M3-30 th Nov 2020) Vers	sion 10 th Dec 2020	Uncertainty	Scale	Link to primary reference materials defining the scale Uncertainty of the scale propagation to working standards	Publication / Certificate Error propagation	
Authors: Joachim Mohn (Empa), Chris Re Stefan Persijn (VSL), Javis Nwaboh (PTB), Hausmaninger (VTT) Epgen PTB, DFM and NPL will identify (from literature and the factors, e.g. matrix effects, spectral interferences, measurement the precision and accuracy of existing OIRS analyzem, for 11 up input to A32.2, A32.7 and A32.8.	ennick (NPL), Tim Arnold (NPL), , Olav Werhahn (PTB), Thomas if existing knowledge) and report on key nt equations and calibration procedure, limiting 2-CH4 and 03H-CH4. This activity will provide		Spectrometer	Repeatability Gas matrix effects (O ₂ , N ₂ , Ar, H ₂ O etc.) Spectral interferences (CO ₂ , N ₂ O, CO, etc.) CH ₄ concentration changes	Experiment Different gas matrixes Different spectral interferences Different concentrations	(Eyer <i>et al.,</i> 2016)
Empa Meteriels Sonce and Technology	Laboratory		Data collection + processing	Measurement protocol Data processing algorithm	Reproducibility experiment	EMPA
DEFM Danish National Metrology Institute			Preconcentration (if applied)	Isotopic fractionation Gas matrix changes	Identical Treatment (IT) experiment	⁽¹ (J. Mohr ² K. Zeyer

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

2021-02-26

Ongoing Activity

CH₄ analyzer at EMPA

Improved OIRS for CH₄

Implement modifications to existing analyzers

interferants

 CH_4 in N_2/O_2

- Currently set-up phase, integration of second cryofocusing trap to better separate O_2 .
- Foreseen experiments:

Improve removal of interfering trace gases (N_2O, CO_2) Reduce changes in gas matrix (O_2)

(J. Mohn, K. Zeyer) • Currently upgrade of OIRS at Aerodyne Research for better T control.

Foreseen experiments:

Test, improve precision

Test spectral interferences (N₂O) and

gas matrix effects (O_2) using mixtures

prepared in WP2

Table 1: Target applications of OIRS for CO₂ detection.

Idoptify	1 torgot	ann	ications
IUEIIIIN	laigei	auu	

Ongoing activity

Application category	Target application	Possible Collaborators (main responsible Institute)	Suitable Instruments
Ambient	Monitoring station	 ICOS Finland network (VTT) 	 VTT CO2 OIRS (A3.1.6)
Source	Forest sources and sinks	 Bioclimatology, Göttingen University 	PTB CO2 OIRS

Table 2: Target applications of OIRS for CH₄ detection.

Application category	Target application	Possible Collaborators (main responsible Institute)	Suitable Instruments
Source	Methane source monitoring	 Outokumpu Deep Drilling Project (VTT) 	VTT CH4 OIRS

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Willkommen Welcome Bienvenue

Joachim Mohn Kerstin Zeyer joachim.mohn@empa.ch Materials Science and Technology

Task 3.2: Development of OIRS for methane isotopologues EMPA, PTB, VSL, NPL, VTT, DFM

The aim of this task is to advance and metrologically characterise spectroscopic methods for isotope ratio measurements of methane.

- Work towards a target precision of 0.2‰ for δ^{13} C-CH₄ and 1‰ for δ^{2} H-CH₄
- Qualify available spectroscopic isotope-specific line data
- Develop novel approach for calibrating OIRS for individual isotopologues
- Identify main uncertainty contributions, assess an uncertainty budget and publish guideline

Activities Task 3.2

A3.2.1 Key factors limiting precision / accuracy of OIRS_1

	Hardware	Factors	Experiment	References
Precision	Spectrometer	Baseline / fringe changes Temperature, pressure changes Stability laser source / electronics Stability power supply etc.	Allan Werle variance	(Werle <i>et al.,</i> 1993; Werle, 2011)
Uncertainty	Scale	Link to primary reference materials defining the scale Uncertainty of the scale propagation to working standards	Publication / Certificate Error propagation	
	Spectrometer	Repeatability Gas matrix effects (O ₂ , N ₂ , Ar, H ₂ O etc.) Spectral interferences (CO ₂ , N ₂ O, CO, etc.) CH ₄ concentration changes	Experiment Different gas matrixes Different spectral interferences Different concentrations	(Eyer <i>et al.,</i> 2016)
	Data collection + processing	Measurement protocol Data processing algorithm	Reproducibility experiment	
	Preconcentration (if applied)	Isotopic fractionation Gas matrix changes	Identical Treatment (IT) experiment	(Eyer <i>et al.,</i> 2016)

A3.2.1 Key factors limiting precision / accuracy of OIRS_2

Instrument	Wavenumber	Isotopic	Line positions [cm ⁻¹] / abundance-	Reference
(Institute)	[cm ⁻¹]	species	weighted line strength [cm ⁻¹ / (molecule cm ⁻²)]	
Aerodyne (Empa)	1295.6 - 1295.7	211	1295.673 / 5.811x10 ⁻²²	(Eyer <i>et al.,</i> 2016)
			1295.649 / 6.050x10 ⁻²³	
		311	1295.626 / 5.654x10 ⁻²²	
	1306.9 - 1307.05	211	1306.948 / 9.273x10 ⁻²³	
		212	1307.040 / 2.229x10 ⁻²³	
		N ₂ O	1306.929 / 1.040x10 ⁻¹⁹	
Aerodyne (NPL)	1293.702 - 1293.814	211	1293.781 / 4.482×10 ⁻²²	
		311	1293.716 / 4.129×10 ⁻²²	
	1306.885-1307.082	212	1307.04 cm ⁻¹ / 2.22×10 ⁻²³	
		N ₂ O	1306.929 cm ⁻¹ / 1.04×10 ⁻¹⁹	
		H ₂ O	1307.019 cm ⁻¹ / 6.30×10 ⁻²⁴	
Picarro G2201-I	6029 - 6057	211	6057.08 / 1.52×10 ⁻²¹	(https://www.picar
(PTB)		311	6029.11 / 1.52×10 ⁻²³	ro.com/products/g
				2201i_isotopic_an
				alyzer)
dTDLAS OIRS	to be determined	211		
instrument (PTB)		311		
CRDS (VSL)	2950.8-2951.4	211	2950.863 / 1.447x10 ⁻²⁴	Hitran: 2951.35955
	(211 & 311)	311	2951.3057 / 1.233x10 ⁻²²	cm-1 and
			2950.851 / 2.734x10 ⁻²³	2951.35983 cm-1
			2951.360 / 1.884x10 ⁻²⁴	with same S
	3067.4-3069.0 (211,	212	3068.95048 / 4.409x10 ⁻²³	
	311 & 212)			
TDLAS (VTT)	3060.25 - 3060.45	311	3060.320 / 7.20×10 ⁻²⁴	(Kääriäinen et al.,
		211	3060.363 / 1.38×10 ⁻²³	2018)
		311	3060.377 / 5.10×10 ⁻²⁴	
		211	3060.408 / 1.20×10 ⁻²⁴	
	3061.38 - 3061.53	212	3061.414 / 5.08 e ⁻²³	
		211	3061.494 / 9.64 e ⁻²³	

A3.2.2 (M9) – Empa Status

- Currently set-up phase, integration of second cryofocusing trap to better separate O_2 .
- Foreseen experiments: • Improve removal of interfering trace gases (N_2O, CO_2) Reduce changes in gas matrix (O_2)

spectral interferants

CH₄ in N₂/O₂

- Currently upgrade of OIRS at Aerodyne Research for better T control.
- Foreseen experiments: Test, improve precision Test spectral interferences (N₂O) and gas matrix effects (O_2) using mixtures prepared in A2.2.3.

Aerodyne dual laser optical spectrometer (CW-IC-TILDAS-D) Measures discrete air samples (flasks) in static mode Species: 626, 636, 628 and 627 RUG – F. Steur

A3.1.1 – develop strategies to measure δ^{13} C and δ^{18} with target precisions of 0.05‰

Continuous drift correction by alternation of sample measurements by working gas measurement:

All st. dev.	n=5		n=10	
in ‰	uncor	cor	uncor	cor
r636	0.04	0.020	0.06	0.025
r628	0.05	0.021	0.10	0.029
r627	0.06	0.018	0.18	0.03

Standard deviations of 5 and 10 sample aliquot measurements, without (uncor) and with (cor) drift correction.

Drift correction as applied in measurement procedure:

 $M_{sample(t)drift\ corrected} = \frac{M_{sample(t)}}{M_{working\ gas(t)}}$

 $M_{working gas(t)}$ is the working gas measurement at time t derived from the time-dependent linear regression of working gas measurements bracketing the sample measurement.

A3.1.2 – compatibility IRMS and OIRS

First steps are made towards a comparison of IRMS and OIRS measurements:

3 CO_2 -in-air mixtures (provided by NPL and INRIM) will be measured by RUG (OIRS) and MPI-BGC (IRMS)

To exclude deviations due to sampling methods, flasks are filled with the reference gas ('sausage method'), first measured at RUG, then sent to MPI-BGC for measurement of the same flasks.

Filling flasks with the reference gas using the sausage method: flasks are connected and flushed with the reference gas

Stable isotope metrology to enable climate action and regulation

Stefan Persijn EMPIR 2019 Environment Partnering meeting, London (UK) 26 and 27June 2019

VSL's track record

- Provide gas standards for CO₂ and CH₄
- Good connections to industry and standardisation (ISO/TC158 & CEN/TC 264)
- Laser spectroscopic measurements of isotopes and purity analysis

References

- 1. Kiseleva, M, Mandon, J, Persijn, S, & Harren, F. (2018). Line strength measurements and relative isotopic ratio ¹³C/¹²C measurements in carbon dioxide using cavity ring down spectroscopy. *JQSRT*, *204*, 152-158.
- 2. Dueck, T, De Visser, R, Poorter, H., Persijn, S., ... (2007). No evidence for substantial aerobic methane emission by terrestrial plants: a ¹³C-labelling approach. *New Phyt. 175*(1), 29-35.
- 3. Nieuwenkamp, G., van der Veen, A. (2006). Discrepancy in infrared measurement results of carbon monoxide in nitrogen mixtures due to variations of the ¹³C/¹²C isotope ratio. Accredit Qual Assur, *10*(9), 506-509.

VSL facilities

- Static (ISO 6142) and dynamic (ISO 6145) gravimetric gas mixture preparation
- Bruker Vertex 70v FTIR spectrometer
- Mid-IR CRDS spectrometer (2.4-5.1 µm)
- TDLAS (QCL, ICL and DFB mid-IR lasers in range 2.4 to 9.6 µm) with various cells (up to 76 m)

VSL's offer (1)

- Prepare static isotopic gas mixtures for CO₂ (obj. 1)
- To develop traceable measurement methods for absolute isotope ratio measurements of CO₂ (obj. 3)
- Line strength measurements of CO₂ isotopes in the mid-IR wavelength region (obj. 4)
- Impact: Disseminate results in ISO/TC 158 and CEN/TC 264 (obj. 5)

Finances

- Labour ~ 190 k€ (~20 MM)
- Costs ~ 40 k€
 - Publication fees
 - Gas cylinders
 - Gases
 - Travel and subsistence

FTIR Set-up at INRIM (I)

- Thermo Scientific Nicolet iS50
- Detector DLaTGS
- 10 m 'White type' gas cell (Thermo Scientific)
- Glove box for pure N₂ flushing
- Use for δ^{13} C measurements in CO₂/synthetic air mixtures at 400 µmol mol⁻¹ within the SIRS and STELLAR projects
- Use of MALT and B-FOS software
- B-FOS software, developed by the Bureau International des Poids et Mesures (BIPM), interfaces the FTIR software and MALT to fit the spectra and quantify the analytes
- Uncertainty evaluation

Fig. 1: FTIR set-up at INRIM

Fig. 2: B-FOS interface

FTIR Set-up at INRIM (II)

- CALIBRATION OF FTIR:
 - Two CO₂ standards of different mole fraction but similar isotopic values
 - Bracketing of unknown samples
 - Measurement of isotopologues 626 and 636
 - Spectroscopic regions 2200-2310 cm⁻¹ and 3500-3800 cm⁻¹

Fig. 3: gravimetric mixtures prepared at INRIM

FURTHER STEPS:

- Production of gravimetric mixtures using different pure CO₂ reference materials from the SIRS project and their verification by FTIR
- Preparation of mixtures of CO₂/SA at 400 µmol/mol by dynamic dilution by means of the dilution system developed at INRIM within the SIRS project for FTIR calibration
- Improvement of the FTIR system for δ^{18} O measurements

Fig. 4: Mixing chamber of the dilution system developed at INRIM

Fig. 5: CO₂/SA mixture at 400 µmol mol⁻¹ spectrum