
JRP-v02

STELLAR: Stable Isotope Metrology to Enable Climate Action and Regulation

Need

- Climate change is one of the greatest risks to society worldwide (CO₂ and CH₄ are major contributors)
- To support governments to verify emissions and demonstrate national reduction targets we need to discriminate between the natural and various manmade sources of greenhouse gases
- Requires information on the isotopic composition
- No infrastructure to deliver international CO₂ and CH₄ gas reference materials with uncertainties to meet demands to underpin isotope ratio measurements
- Compromises the comparability of measurement data
- Exploitation of advances in optical spectroscopy for traceable field deployable techniques
- JRP fills a traceability gap new measurement infrastructure for stable isotopes of CO₂ and CH₄

Ŧ

2000

1975.

1950[.]

1925•

mol⁻¹)

δ⁻¹⁸ [mUr

J m C

-CH₄ VSM

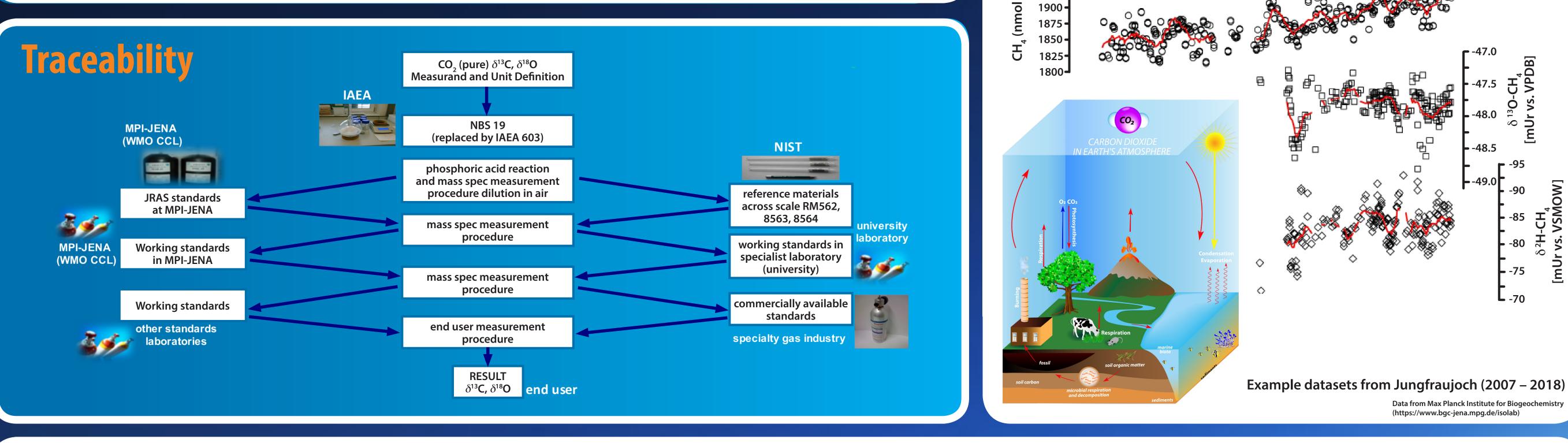
 \sim

-75

L -70

Data from Max Planck Institute for Biogeochemistry

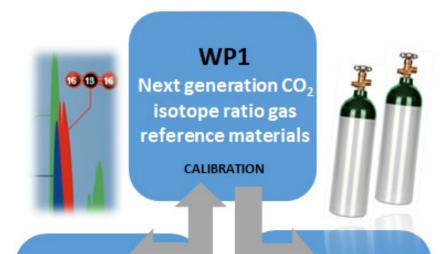
(https://www.bgc-jena.mpg.de/isolab)


-0.5

-1.0

1.5

(gas reference materials, calibration methods and instrumentation)



Quality and efficiency of implementation

- Developing metrology capacity and synergy to meet stakeholder requirements and create a cost-effective approach
- Stimulate innovation through a partnership of NMIs and industry applying relevant metrological and technical expertise
- Partners could only come together under EMPIR and only consortium able to achieve these objectives

Impact and uptake

- More accurate, comparable data to separate the various man-made sources and natural contributions of greenhouse gases in the atmosphere and local source apportionment
- Enable governments to develop accurate emission inventories and models to comply with legislation (Kyoto Protocol, COP21), inform new policy, better

Appropriate management structures, procedures and risk mitigation plans

WP3	WP2
Advancing optical	First time CH ₄
isotope ratio	isotope ratio gas
spectroscopy	reference materials
CHARACTERISATION	CALIBRATION

WP4 Creating Impact Stakeholders Atmospheric **Reference Material** Providers Monitoring Communit Instrument Specialty Gas Metrology Standardisation Manufacturers Industry Community

abatement strategies and mitigate emissions

- Impact on quality of life and the health of EU citizens. Lower uncertainty in measurement - cheaper compliance with directive 2008/50/EC on air quality
- Industrial and other user communities (new reference materials, instrumentation, methods and recommendations will benefit gas metrology, instrument manufacturers, speciality gas companies and the atmospheric monitoring community)
- Metrology and user communities (CCQM, WMO-GAW, IAEA and IUPAC-CIAAW)
- Relevant standards (ISO/TC158 Gas Analysis and CENTC/264 Air Quality)
- Key stakeholders engaged as collaborators and to facilitate access to JRP outputs

Collaborators

WMO • FAAM • KRISS • BOC • CEN • ISO • Aerodyne • ABB • NU Instruments • SIAD • LI-COR • NIPPON • Masaryk University • NIWA • Krawkow University of Science and Technology • CNR-Institute for Atmospheric Pollution (Italy) • IUPAC-CIAAW

