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Outline
 Rationale and scope 

 Circuits for frequency response characterization 
of MV voltage measurement transformer  

 Method  for the real-time compensation of 
voltage transducer frequency response

 Experimental validation

o Discussion and conclusions  
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Motivation 
Use of power electronic devices and DG from renewable is 
modifying  the transmission and distribution grid conditions 
with reference  both to power flow and its quality  

T

 Information from 
PMUs and knowledge 
of the quality of the 
transferred power 
play a basic role in 
ensuring accurate 
evaluation of grid  
state

Joint Workshop Grid Sens and Smart Grid II, Glasgow (UK), 3rd February  2016



Motivation 
T

 Used instrument 
transformers do not 
always accurately scale 
and input to the 
PMU/PQ measuring 
instrument the 
voltage/current levels

 Need for the use of most accurate, extended
performances transducers with reference to the on-
site measurement conditions.
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Smart Grid II…
 Optimization of performances of non-invasive 

current transducers

 Voltage transformers (VTs) calibration systems 
for determining  frequency response at rated 
voltage 

 Methods for real time compensation of voltage 
transducer frequency response

 Modelling for the uncertainty propagation 
through the PMU/PQ measurement chain 
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Generation  of realistic distorted voltages (fundamental at 
rated voltage with superimposed 
harmonics/interharmonics/subharmonics,…). 

Operating frequency range: 

up to the 50th harmonic (minimum requirement)

Traceable measurement of ratio and phase errors

Uncertainty: two orders of magnitude better the indicated 
accuracy limits for VTs in PQ measurements  (IEC 60044-8) 

Calibration set-up requirements

Joint Workshop Grid Sens and Smart Grid II, Glasgow (UK), 3rd February  2016



Waveform generator

outsync

Controller

DAQ

Shielded

Reference

Divider

VT

under test

MV Amplifier

MV Connections

MV area

LV output LV output

Calibration circuit layout: 

i) Comparison with a reference voltage transducer 

Supply:

Arbitrary Waveform Generator

+  MV Amplifier 

(+ step-up transformer)  

Measurement:

Reference divider

DAQ system (Agilent 3458/NI)
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30 kV Compensated reference resistive divider
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DC to 30 kHz 
Ratio error variation <2·10-4

Phase error <110 rad

(with compensation stage) 



 Second step (b) First step (a)
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Calibration circuit layout:
ii) Calibration by HV capacitance bridge
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Uncertainty component analysis

Quantity/

influence factor

Standard 

Uncertainty

Evaluation method

C2 non linearity 

(up to 40 kV, 50 Hz):

Capacitance

Dissipation factor 

< 210-5

< 1 rad

Comparison with a 

700 kV  capacitor

C2 loading effect

( 50 Hz to 2.5 kHz):

ratio error

phase errror

neglible up to 1 kHz 

400 V/V at 2.5 kHz

< 10 rad

Computation and 

measurements on 

a 20 kV/100 V VT  

Digitizer (VCH1=VCH2)

(50 Hz to 3 kHz)

Ratio error:

Phase error: 

20 ppm to 40 ppm

2 rad to 30 rad
Generation of known signals 

Digitizer (VCH1=100VCH2)
(50 Hz to 3 kHz)

Ratio error:

Phase error: 

30 ppm to 100 ppm

4 rad to 100 rad

Generation of known signals

of different amplitudes
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Ideal  conditions: 

Supply voltage linearity
of C2 and RCH2 under
step a) and b) conditions

No loading effect of C2 on
the VT under calibration
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MV amplifier (30 kVp, 20 mA)

VT under 

test

Calibration of a 20 kV/3 VT
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Compressed gas 

capacitor C1

Max voltage:  200 kV

C1:             103.54 pF

tan:           1·10-5

Compressed gas 

capacitor C2

Max voltage:  60 kV

C2:          1.0467 nF

tan:           1·10-5



Frequency response of a 20 kV/3/100 V VT
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Compensated Transducer

Uncompensated

Transducer

Compensation

Device

Input Output

Once errors are known,  they can be corrected cascading to 
the transducer a compensation device

Transducer error compensation
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 Linearity of transducer
Voltage measurement transformer assumed linear from 80% to
120% of rated voltage and with high impedance load.

Working hypotheses for
of compensation of VTs and CTs
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Input Output

…the compensation device should implement transducer 

inverse frequency response!



 Analog implementation drawbacks

 acceptable results only on a very limited range of frequencies

 inherent variability of the physical components (resistors,
inductors, and capacitors)

 rigidity of the compensator that is not reconfigurable except by
replacement of hardware components, preventing the
possibility of real-time changes (non-adaptive filters)

 Digital implementation drawbacks

 time discretization of the input variables;

 numerical quantization, that is amplitude discretization of the
input variables;

 delay of execution

Compensation through a filter
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Filter function identification
1) Measurement of the transducer frequency response in Nf

points (Hd(fi)=VLV(fi)/VHV(fi))

2) Modelling of an infinite impulse response filter (IIR), as a
product of N Second Order Sections:

3) Identification of the 4N+1 filter coefficients (P), by minimizing
the objective function C(P):

W(fi)=weight
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1. Choose the weights of the objective function
– Weights have influence on the algorithm performance

2. Choose a range for number of SOS (e.g. 1 to
10)
– Typically, higher filter orders reach better compensation

performance but higher order means slower convergence of
the optimization algorithm and higher computational burden
for real-time filter execution

3. Choose a number of iterations for every SOS
– Since the algorithm has a stochastic section, two identical runs

give different results

4. Choose performance indexes to evaluate
results of optimization algorithms

Settings of the optimization 
algorithm
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Compensated Transducer

Uncompensate

d Transducer

Input Output
FPGAA/D

Converter

D/A

Converter

Compensation 

Device

FPGA implements the  DIGITAL FILTER

Compensation with
Real-Time Digital Signal Processing
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Compensation of simulated 
VT response
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1. Fluke 5500A calibrator

2. DAQ board, 4 synchronous
16 bit inputs, ± 10 V,
maximum sampling rate
1 MHz

3. Application of sinusoidal
signals from 3 Hz to 250 kHz:

- 7 V up to 100 kHz

- 3 V above 100 kHz

4. Acquisition and elaboration
software in Python

Application to the 
compensation of a  1 kV VT response

1 kV/100 V VT

1 VA cosφ=1
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MatLab implementation of 
digital filter (1)

Magnitude

Phase

First resonance frequency

Comparison measured and 
inverse computed frequency 

response 
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MatLab implementation of 
digital filter (2)

Compensated and uncompensated system

Ratio Error < 0.05 % until 1 kHz 

Phase displacement < 2 mrad until 1 kHz
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Experimental characterization
of FPGA compensated VT 

1. Fluke 5500a calibrator

2. DAQ board

NI CompactRIO: AC signals 3 Hz to 250 kHz:

a. 7 V up to 100 kHz

b. 3 V above 100 kHz.

1. Software: LabVIEW FPGA
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Next steps

Conclusions
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 Method  for the real-time 
compensation of voltage 
transducer frequency response  
by  digital filter have been 
developed. 

 Systems for the 
measurement of frequency 
response of MV VTs are 
being experimented with 
distorted waveform up to 
some ten kilohertz. 

 Extension of the VT 
characterization up to 30 kV 

 Investigation on frequency 
response of VT of the same 
type as those operating in 
MV substations

 Implementation of the real 
time  compensation procedure 

 Compensantion of the 
unsatisfactory response of VTs 

 Provide input data to the 
model  for the propagation of 
the uncertainty through the 
PMU/PQ measurement chain


