

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Institute of Metrology METAS

PMUs in Distribution Networks

Jean-Pierre Braun & Laureline Hentgen

Requirements for an advanced PMU calibrator Error limits

Improving the TVE error by a factor 10 demands:

Reduction of timing error Reduction of magnitude error Reduction of phase error 10x lower 10x lower 10x lower

TVE 0.1%

Max Timing

Error 3.18 µs

400

600

Phase error [µrad]

800 1000 1200

1200

1000

800

600

400

200

0

0

200

Magnitude error [ppm]

TVE 0.001%

Hardware Improvement of Existing PMU Calibrator Time Reference (1)

Correlation of two GPS receivers (PPS outputs)

- Identical geographical position
- Dissimilar GPS receivers
- Phase error up to 1.6 mdeg.

Hardware Improvement of PMU Calibrator Active calibration

Aim: Voltage and current accuracy between 10 and 20 ppm

Hardware improvement of PMU calibrator Limited Bandwidth of Amplifiers (1)

	f	Attenuation	Attenuation	Phase	Slope Att.	Slope Pha.
	Hz	-	ppm	deg	ppm/Hz	deg/Hz
	45	0.999976	-24.0	-0.39666		
Impact of Amplifier	49	0.999972	-28.4	-0.43191		
Bandwidth 6.5 kHz (Single Pole model)	50	0.999970	-29.6	-0.44073	-1.18	-0.00881
	51	0.999969	-30.8	-0.44954		
	55	0.999964	-35.8	-0.48480		
	59	0.999959	-41.2	-0.52006		
	60	0.999957	-42.6	-0.52887	-1.42	-0.00881
	61	0.999956	-44.0	-0.53768		
	65	0.999950	-50.0	-0.57294		

ENG52, ENG63 joint Workshop - 3 Feb. 2016

Hardware Improvement of PMU Calibrator Limited bandwidth of amplifiers (2)

Equalisation of Frequency Response

Digital filters used in both paths

- Must correct magnitude and phase errors
- Not identical corrections (measurement path has a wider bandwidth)

Aim: Flat frequency response between 45 and 65 Hz

Improvement of PMU Calibrator Real time waveform generator

Benefits of a Real Time Waveform Generator

- Reduction in the amount of stored data (several Gbytes)
- Flexibility in the creation of special test scenarios (not part of C37.118.1)
- Permits to test PMUs for various PQ disturbances
- Expends the use of the PMU calibrator to PQ analysers
- Use of pre recorded test signals preserved (playback of field acquired waveforms)

Impact of estimation algorithms Simulations

Quantisation:

• 16 or 24 bits resolution

Signal processing:

- Single sine wave fitting
- Dual sine wave fitting
- Frequency of signal known

Aim: To determine the impact of noise and distortion on incertitude

Impact of estimation algorithms Single sine wave fit

1. Least Square Estimation of the three fitting parameters

$$\min_{A_0, B_0, C_0} \sum_{n=1}^{N} \{y_n - A_0 \cos(\omega_0 t_n) - B_0 \sin(\omega_0 t_n) - C_0\}^2$$

2. Equivalent matrix equation: $\min_{X_0} (Y - D_0 X_0)^T (Y - D_0 X_0)$

$$D_{0} = \begin{bmatrix} \cos(\omega_{0}t_{1}) & \sin(\omega_{0}t_{1}) & 1\\ \cos(\omega_{0}t_{2}) & \sin(\omega_{0}t_{2}) & 1\\ \vdots & \vdots & \vdots\\ \cos(\omega_{0}t_{N}) & \sin(\omega_{0}t_{N}) & 1 \end{bmatrix}; \quad X_{0} = \begin{bmatrix} A_{0}\\ B_{0}\\ C_{0} \end{bmatrix}; \quad Y = \begin{bmatrix} y_{1}\\ y_{2}\\ \vdots\\ y_{N} \end{bmatrix}$$

3. Unique solution to the minimisation problem $X_0 = (D_0^T D_0)^{-1} (D_0^T Y)$

Impact of estimation algorithms Single sine wave fit in the presence of white noise

- Signal Frequency: 50 Hz
- Sampling Frequency: 18 kHz
- Measurement time : 1 s (50 Signal periods)

Impact of estimation algorithms Impact of distortion on single sine wave estimation

- Signal Frequency: 50 Hz
- Sampling Frequency: 18 kHz
- Measurement time: 1 s (50 Signal periods)
- Harmonic structure: 1/rank

Impact of estimation algorithms Combined impact of white noise and distortion

- Signal Frequency: 50 Hz
- Sampling Frequency: 18 kHz / 16 bits resolution
- Measurement time: 1 s (50 Signal periods)
- Harmonic structure: 1/rank

Impact of estimation algorithms Impact of sampling rate and observation interval

Simulation parameters

- Signal Frequency: 50 Hz
- White noise: 16 dB
- THD: 0.75%
- Resolution

16 bits

Impact of estimation algorithms Dual sine wave fit

Extension of the single sine wave fitting algorithm

1. Least Square Estimation of the five fitting parameters

 $\min_{A_0, B_0, C_0} \sum_{n=1}^{N} \{y_n - A_0 \cos(\omega_0 t_n) - B_0 \sin(\omega_0 t_n) - A_1 \cos(\omega_1 t_n) - B_1 \sin(\omega_1 t_n) - C_0\}^2$

2. Equivalent matrix equation: $\begin{aligned}
&\min_{X_0} (Y - D_0 X_0)^T (Y - D_0 X_0) \\
& \sum_{X_0} \left[\begin{array}{c} \cos(\omega_0 t_1) & \sin(\omega_0 t_1) & \cos(\omega_1 t_1) & \sin(\omega_1 t_1) & 1 \\ \cos(\omega_0 t_2) & \sin(\omega_0 t_2) & \cos(\omega_1 t_1) & \sin(\omega_1 t_2) & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \cos(\omega_0 t_N) & \sin(\omega_0 t_N) & \cos(\omega_1 t_N) & \sin(\omega_1 t_N) & 1 \end{array} \right]; \quad X_0 = \begin{bmatrix} A_0 \\ B_0 \\ A_1 \\ B_1 \\ C_0 \end{bmatrix}
\end{aligned}$

3. Unique solution to the minimisation problem $X_0 = (D_0^T D_0)^{-1} (D_0^T Y)$

THE TAS

Impact of estimation algorithms Dual sine wave fit in the presence of white noise

Simulation parameters

- Signal Frequency:
- Interharmoncic frequency:
- Sampling Frequency:
- Measurement time:

- 75 Hz (Magnitude 1/10 of fundamental)
- ency: 18 kHz
 - 1 s (50 Signal periods)

50 Hz

Impact of estimation algorithms Impact of distortion on dual sine wave estimation

- Signal Frequency:
- Interharmoncic frequency:
- Sampling Frequency:
- Measurement time:

- 50 Hz
- 75 Hz (Magnitude 1/10 of fundamental)
- 18 kHz
- 1 s (50 Signal periods)

Impact of estimation algorithms Combined impact of white noise and distortion

- Signal Frequency:
- Interharmoncic frequency:
- Sampling Frequency:
- Measurement time:
- Quantisation:

- 50 Hz
- 75 Hz (Magnitude 1/10 of fundamental)
- 18 kHz
- 1 s (50 Signal periods)
- 16 Bits

Conclusions

- The use of PMUs in distribution networks is subject to:
 - Significantly improved TVE performances compared to IEEE C37.118.1
 - Strong robustness to power quality disturbances
 - Appropriate calibration infrastructures
- Advanced PMU calibrators require:
 - Greatly improved magnitude, phase and timing accuracy
 - TVE in the order of 0.01 is feasible, but 0.001 is challenging
 - Flexible waveform generators for the tests of PQ disturbances

Metrology has been and remains an enabler of the PMU technology

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Institute of Metrology METAS

Thanks for your interest