

(Transportable) Optical Lattice Clocks

Christian Lisdat

Outline:

Clock instability Sensitivity function, Dick effect

> Optical lattice Doppler, trapping, Lamb-Dicke

An essential tool: the clock laser critical aspects, thermal noise, beyond 10⁻¹⁶ instability

> 2nd part: Applications – clock comparisons, geodesy

A clock is...

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Optical lattice clocks

Nationales Metrologieinstitut page 3 of all

Laser cooling of strontium-87

Stability: resolve a frequency

M. Schioppo et al., Nature Photonics 11, 48 (2017)

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.-14.09.2018

Optical lattice clocks

Nationales Metrologieinstitut page 5 of all

Sensitivity function:

$$\sigma_{p_{\rm e}} = \frac{dp_{\rm e}}{d\nu} \sigma_{\nu}$$

Which change of p_e will I get for a phase/frequency jump during the interrogation?

$$\delta P = \frac{1}{2} \int_0^{T_c} 2\pi g(t) \delta \nu(t) dt \qquad g(t) = 2 \lim_{\Delta \phi \to 0} \delta P(t, \Delta \phi) / \Delta \phi$$

G. J. Dick, Proceedings of 19th Annu. Precise Time and Time Interval Meeting, Redendo Beach, 1987, 133 – 147 (1988)
G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. J. Dick, A. Clairon IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 887 – 894 (1998)
A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, P. Lemonde, J. Opt. B: Quantum Semiclass. Opt. 5, S150 – S154 (2003)

Sensitivity function:

G. J. Dick, Proceedings of 19th Annu. Precise Time and Time Interval Meeting, Redendo Beach, 1987, 133 – 147 (1988)

G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. J. Dick, A. Clairon *IEEE Trans. Ultrason. Ferroelectr. Freq. Control* **45**, 887 – 894 (1998) A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, P. Lemonde, *J. Opt. B: Quantum Semiclass. Opt.* **5**, S150 – S154 (2003) A. Al-Masoudi *et al.*, Phys. Rev. A **92**, 063814 (2015)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.-14.09.2018

Optical lattice clocks

Sensitivity function:

G. J. Dick, Proceedings of 19th Annu. Precise Time and Time Interval Meeting, Redendo Beach, 1987, 133 – 147 (1988)

G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. J. Dick, A. Clairon *IEEE Trans. Ultrason. Ferroelectr. Freq. Control* **45**, 887 – 894 (1998) A. Quessada, R. P. Kovacich, I. Courtillot, A. Clairon, G. Santarelli, P. Lemonde, *J. Opt. B: Quantum Semiclass. Opt.* **5**, S150 – S154 (2003) A. Al-Masoudi *et al.*, Phys. Rev. A **92**, 063814 (2015)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.-14.09.2018

Sensitivity function and noisy laser:

$$\sigma_y^2(\tau) = \frac{1}{\tau} \sum_{m=1}^{\infty} \left(\frac{g_m^{c2}}{g_0^2} + \frac{g_m^{s2}}{g_0^2} \right) S_y^f(m/T_c)$$

 S_y^f : one-sided power spectral density

$$\begin{pmatrix} g_m^s \\ g_m^c \end{pmatrix} = \frac{1}{T_c} \int_0^{T_c} g(t) \begin{pmatrix} \sin(2\pi m t/T_c) \\ \cos(2\pi m t/T_c) \end{pmatrix} dt$$

$$g_0 = \frac{1}{T_c} \int_0^{T_c} g(t) dt$$

G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. J. Dick, A. Clairon IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 887 – 894 (1998)

 Physikalisch-Technische Bundesanstalt
 Braunschweig und Berlin

 OC18 School Gressoney-la-Trinité, 10.–14.09.2018
 Optical lattice clocks

laser frequency

interrogation with long dead time

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

Nationales Metrologieinstitut page 10 of all

laser frequency

interrogation with long dead time

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

Nationales Metrologieinstitut page 11 of all

$$\sigma_y(\tau) = \sqrt{\frac{S_y}{\tau} \left(\frac{1}{d} - 1\right)}$$

frequency standard's instability for white frequency noise of the laser, *d*: duty cycle

$$S_y = 2 \cdot \sigma_y^2 (1 \text{ Hz})$$

Very bad for lattice clocks: loading and state preparation in every cycle

averaging time (s)

$$\sigma_y(\tau) = \sqrt{\frac{S_y}{\tau} \left(\frac{1}{d} - 1\right)}$$

$$S_y = 2 \cdot \sigma_y^2 (1 \text{ Hz})$$

frequency standard's instability for white frequency noise of the laser, *d*: duty cycle

M. Takamoto et a.., Nature Phot. 5, 288 (2011)

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

Wants and Don't wants

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Optical lattice clocks

Wants and Don't wants: Doppler

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Optical lattice clocks

Nationales Metrologieinstitut page 16 of all

required relative shift to beat gravity: several 10⁻¹⁰

for 10⁻¹⁸: control of the effect at 10⁻⁸ needed

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

S. Falke, H. Schnatz, J. S. R. Vellore Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, C. Lisdat *Metrologia* **48**, 399 – 407 (2011)

Easy? Hm...

- Tunneling?
- \rightarrow Doppler shift
- **Dipole approximation**
- → two-photon transitions; higher multipole transitions
- \rightarrow not linear in intensity!

Light shift will depend on polarization (if not J = F = 0) \rightarrow control of polarization

R. Le Targat PhD thesis (2007)P. Lemonde & P. Wolf, Phys. Rev. A 72, 033409 (2005)

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Optical lattice clocks

Nationales Metrologieinstitut page 22 of all

Possible shift in order of the bandwidth!

R. Le Targat PhD thesis (2007) P. Lemonde & P. Wolf, Phys. Rev. A **72**, 033409 (2005)

Physikalisch-Technische Bundesanstalt
 Braunschweig und Berlin

Optical lattice clocks

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Optical lattice clocks

Uncertainty budget

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Optical lattice clocks

Uncertainty budget

Shift (10 ⁻¹⁸ × v_{clock})	Yb-1 Shift	Yb-1 Uncertainty	Yb-2 Shift	Yb-2 Uncertainty	Differential Uncertainty	· 10 ⁻¹⁶
Background gas collisions	-5.5	0.5	-3.6	0.3	0.3	led led
Spin polarization	0	<0.3	0	<0.1	<0.3	oual
Cold collisions*	-0.21	0.07	-0.04	0.02	0.07	¹ € 10 ⁻¹⁷
Doppler	0	< 0.02	0	< 0.01	0.02	E I V
Blackbody radiation*	-2,361.2	0.9	-2,371.7	1.0	0.6	in in the second s
Lattice light (model)	0	0.3	0	0.3	<0.1	T I I I
Travelling wave contamination	0	<0.1	0	<0.01	<0.1	
Lattice light (experimental)	-1.5	0.8	-1.5	0.8	0.2	
Second-order Zeeman*	-118.1	0.2	-117.9	0.1	0.1	
DC Stark	0	< 0.07	0	<0.04	< 0.08	10 ⁻¹⁹ Ini
Probe Stark	0.02	0.01	0.02	0.01	< 0.01	10^1 10^2 10^3 10^4 10^5
Line pulling	0	< 0.1	0	<0.1	<0.1	Averaging time (s)
Tunnelling	0	< 0.001	0	< 0.001	< 0.001	
Servo error	0.03	0.05	0.03	0.05	< 0.01	
Optical frequency synthesis	0	<0.1	0	<0.1	<0.1	Record data from NIST Yb lattice clock
Total	-2,486.5	1.4	-2,494.7	1.4		$u = 1 / \times 10^{-18}$
Gravity shift from TT reference frame	180,819	6	180,815	6	0.3	McGrew <i>et al.</i> , arXiv 1807.11282
Total shift from TT reference frame	178,333	6	178,320	6	0.8	

Clock lasers

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.-14.09.2018

Optical lattice clocks

Nationales Metrologieinstitut page 27 of all

Clock lasers

Physikalisch-Technische BundesanstaltBraunschweig und BerlinOC18 School Gressoney-la-Trinité, 10.–14.09.2018Optical lattice clocks

Nationales Metrologieinstitut page 28 of all

A. Al-Masoudi *et al.*, PRA **92**, 063814 (2015)

A. Al-Masoudi et al., PRA 92, 063814 (2015)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Optical lattice clocks

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Optical lattice clocks

= 212 mm

Spacer and mirror substrates in <111> orientation

<111>

FEM optimized cavity shape for minimal vibration sensitivity

High finesse ion beam sputtered SiO_2/Ta_2O_5 coatings for 1542 nm.

mirrors optically contacted in the same crystallographic orientation as the spacer

expected thermal noise limit at T =123.5 K:

mod
$$\sigma_v \approx 4 \times 10^{-17}$$

$$\frac{\Delta\nu}{\nu} = -\frac{\Delta L}{L}$$

absolute length fluctuations ≈ 8.5×10⁻¹⁸ m

dominated by mirror coatings !

proton diameter ≈ 0.85 fm = 850×10^{-18} m

Silicon II + Silicon III

Ringdown measurement : TEM₀₀ mode 0,10 0,08 transmission [V] 0,06 $\tau = 100 \ \mu s$ 0,04 0,02 · MMMMMMMMM 0,00 · 100 200 300 400 0 500 time [µs] $F = 480\ 000$

> A clock is ... an oscillator with data sheet

- Noise and clock sensitivity to it Projection noise, sensitivity function, Dick effect
- > Trapping, Lamb-Dicke regime
- Clock lasers

What can you do?

Clock comparisons: international

Ch. Lisdat et al., Nature Comm. 7, 12443 (2016)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

Comparisons – Paris & Braunschweiß

Ch. Lisdat et al., Nature Comm. 7, 12443 (2016)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

Comparisons – Paris & Braunschweiß

animation: A. Bezdek and J. Sebera, Computers & Geosciences 56, 127 (2013), data set: ETOPO2 / EGM2008

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

Comparisons – Paris & Braunschw

Local Lorentz invariance: search for daily modulation due to motion wrt. background

was done with Rb clocks (GPS) P. Wolf & G. Petit, Phys. Rev. A **56**, 4405 (1997)

 $|\alpha| \le 10^{-6}$

LLI test also with fast ion beams B. Botermann *et al.*, Phys. Rev. Lett. **113**, 120405 (2014)

 $|\alpha| \leq 2 \times 10^{-8}$

Sr clocks London, Paris, Braunschweig P. Delva *et al.*, Phys. Rev. Lett. **118**, 221102 (2017)

 $|\alpha| \leq 1.2 \times 10^{-8}$

animation: A. Bezdek and J. Sebera, Computers & Geosciences 56, 127 (2013), data set: ETOPO2 / EGM2008

Transportable optical clocks

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin OC18 School Gressoney-la-Trinité, 10.–14.09.2018 Optical lattice clocks Nationales Metrologieinstitut page 42 of all

Transportable optical clocks

S. Koller *et al.*, Phys. Rev. Lett. **118**, 073601 (2017)

View into the car trailer **>**

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

Nationales Metrologieinstitut page 43 of all

Transportable optical clocks

Optical clocks as sensors:

- Directly measure potential differences.
- Vision: Realize geoid by clocks.

M. Vermeer, Rep. of the Finnish Geod. Insti. **83**, 1 (1983)

A. Bjerhammar, Bull. Geodesique **59**, 207 (1985)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.-14.09.2018

Optical lattice clocks

Geodesy: Why clocks?

Effect: relativistic redshift

Quelle: Wikipedia

- Photon loses energy when fighting against gravity
- It cannot slow down but it can change its frequency
- The lower pendulum's oscillation is perceived as slower by the upper clock
- Lower clocks run slower!

Geodesy: Why clocks?

Effect: relativistic redshift

Frequency change Δf proportional to potential difference ΔU A small effect: 1×10^{-18} per $g \cdot 1$ cm

Rep. Prog. Phys. 81, 064401 (2018)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

Nationales Metrologieinstitut page 46 of all

My GPS tells me the height!

Rep. Prog. Phys. 81, 064401 (2018)

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Optical lattice clocks

My GPS tells me the height!

Rep. Prog. Phys. 81, 064401 (2018)

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Optical lattice clocks

Nationales Metrologieinstitut page 48 of all

My GPS tells me the height!

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

Nationales Metrologieinstitut

page 49 of all

My GPS tells me the height!

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Optical lattice clocks

Surface of equal potential: Geoid

smaller distance, same potential

Geoid height (EGM2008, nmax=500)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Optical lattice clocks

-20 -40-60

Surface of equal potential: Geoid

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

First time off-campus

Testing at PTB – know your clock

faster averaging using laboratory lasers

Testing at PTB – know your clock

Second campaign: Paris – PTB

Combined uncertainty $\approx 3 \times 10^{-17}$ or 30 cm in 3 hours. Gravity potential correction from geodesy: $-247.2(4) \times 10^{-17}$ unfortunately: 'anomaly' in the second half of the campaign

Second campaign: Paris – PTB

Recording data:

Now: Sr clock is in Munich

Day 2: blue MOT Day 3: atoms in the lattice

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

OC18 School Gressoney-la-Trinité, 10.–14.09.2018

Optical lattice clocks

Nationales Metrologieinstitut page 57 of all

- Clock comparisons require knowledge of the red shift
- > They can be used to test clocks or theories or ...
- Geodesy requires trust in your clock
 and the best available clocks
- Compact, commercial, simple, and cheap optical clocks may change geodesy

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin Bundesallee 100 38116 Braunschweig Christian Lisdat Working Group 4.32, Optical lattice clocks phone: 0531 592-4320 e-mail: christian.lisdat@ptb.de

www.ptb.de