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Existing standards: There’s a gap

Stability: ~ 10-14 s-1/2Stability: ~ 10-12 s-1/2

...

Stability <10-12 s-1/2

and portable:
Interesting for applications



Portable clocks
beyond 10-12  s-1/2

Trapped-atom clocks
• Interactions are important
• Many-body effects
• Quantum enhancement techniques 

are particularly promising

Optical lattice clocks



Outline

Part 1
• Trapped-atom clock on a chip (TACC)
• Spin self-rephasing
• Clock stability

Part 2
• Quantum enhancement techniques:

QND detection and Spin Squeezing
• Spontanous spin squeezing
• ee-TACC: Towards quantum enhancement

in a metrological environment



Trapped Atom Clock on a Chip – TACC



Atom Chips
Complex manipulation

Long coherence time

Compact setup,
fast BEC

Ramsey time (seconds)

ColdQuanta.com

Drop tower proven!
Quantus collaboration



Enabled by atom chip technology: BEC in microgravity

Bremen drop tower (146m tall)
ZARM

Complete BEC experiment

QUANTUS collaboration: Universities of Hannover, Ulm, Darmstadt, 
Hamburg, Birmingham, Berlin (HU), Bremen (ZARM), Munich (LMU), Paris (ENS).

• 4.7 to 9 seconds free fall

• 110 meters falling height

• 3 drops per day

• 50 g max. at impact 

• Payload area: 
173 cm height,
60 cm diameter,  
234 kg max





That’s cool, so
let’s build a clock 
on an atom chip!

OK, but what about 
level shifts??



Trap shifts: Dephasing

ensemble of atoms will dephase
(inhomogeneous broadening)

(r) 

potential and interactions 
shift the energy levels

|2⟩

|1⟩



Solution: “Magic” fields

An ensemble of atoms 
stays in phase.
Coherence is preserved.

(r) = const

There can be a shift, but it 
is constant in space.

Key idea in optical lattice clocks!



Long coherence time in a trap?

• Unperturbed clock frequency: ω0

• Trapping potential perturbs transition: 
Differential Zeeman shift, ω0 + Δ(r)

• Collisional interactions:
density-dependent shift

• Minimize these perturbations?

D. M. Harber, H. J. Lewandowski, J. M. McGuirk, and E. A. Cornell, 
Effect of cold collisions on spin coherence and resonance shifts
in a magnetically trapped ultracold gas,
PRA 66, 053616 (2002).

Seminal work, 87Rb in a magnetic trap:



Zeeman shifts

87Rb

F=1

F=2

mF-2 -1 0 1 2

6.8 GHz 

Second-order shift on |1,-1⟩ - |2,1⟩ is even 
weaker than on “canonical” |1,0⟩ - |2,0⟩ !

“magic” field!

Differential shifts



Collisional mean-field shift

• μK temperatures -> s-wave scattering
• In 87Rb, all relevant scattering lengths nearly equal:

• Collisional shift proportional to density: Δ(r) ~ -n(r)



Lewandowski et al., PRL 88, 070403 (2002)

“Magic” field for 87Rb
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Can we do that on a chip?



Yes we can!
Ph. Treutlein et al., PRL 92, 203005 (2004).

Coherence time τcoh = 2.8 s

Short-term Allan variance dominated 
by ambient magnetic field fluctuations.

0.08

z

…seemed to agree with predictions:



Can we reach a relevant range for compact clocks?

Stability: ~ 10-14 s-1/2Stability: ~ 10-12 s-1/2 Target stability: ~ 10-13 s-1/2 range

45 
mm



45 mm

TACC: Trapped-Atom Clock on a Chip

• Coplanar waveguide for microwave excitation
• Incorporate atomic clock know-how and techniques: 

• Two-layer magnetic shielding
• Stable, low-noise current sources
• Interrogation: homebuilt frequency chain with low phase noise,

locked on H maser
• + lots of SYRTE know-how



TACC: Trapped-Atom Clock on a Chip



Ramsey measurement

• Magnetic trap, 
• Evaporative cooling to 175nK (30nK above Tc)
• 25000 atoms
• Ramsey spectroscopy.

Vary Ramsey time (but keep trapping time constant).

Contrast decay time τcoh = 58 ±12 s

This is more than 10 
times better than 

calculated!
What’s going on?

C. Deutsch et al PRL 105, 020401 (2010) 



23

Origin: forward collisions of indistinguishable particles

spin-aligned collisions: 
f/b scattering is indistinguishable
=> 2 x exchange interaction energy

anti-parallel spins:
f/b scattering is maximally distinguishable
=> 1 x exchange interaction energy

• A very general effect arising from indistinguishability
• Known to cause spin waves

before collision after collision

partially aligned spins:
calculate superposition of the above
=> exchange interaction energy creates torque on spins

E. P. Bashkin, JETP Lett. 33, 8 
(1981); C. Lhuillier and F. Laloe, J. 
Phys. 43, 197 and 225 (1982)

PRL 88, 230404, 2002
PRL 103, 010401, 2009

“Identical Spin Rotation Effect” (ISRE)



Interactions & Timescales

ex = 2  8 HzExchange rate (ISRE rate):

Lateral (elastic) collisions c = 2  2 Hz

Trap frequency x = 2  30 Hz

Dephasing rate: 0 ~ 2  0.08 Hz

Conditions for tight spin 
synchronization



Free evolution: Hot atoms have 
stronger detuning, rotate faster than 
cold atoms. 

just after p/2 
pulse 

After half a spin rotation, hot atoms are 
“behind” cold atoms and catch up => 
synchronisation

Atoms stay synchronised because 
opening angle is small.

Spin self-rephasing
A quantum effect caused by particle statistics

ISRE rotates spins
around their sum

C. Deutsch et al PRL 105, 020401 (2010) 



Full model

• Prediction for our conditions:
Contrast decay time 100 s
(Experiment is limited by asymmetric loss of |0> and |1>)

• Can make predictions for wide range of parameters

• Motion treated semiclassically
• Full quantum treatment of spin 
• Trap frequencies are fastest => Δ depends only on energy
• Interaction becomes “long-ranged in energy space”
• Results in a classically-looking equation for Bloch vector.
• Three experimentally tunable parameters:

 Inhomegeneity
 ISRE rate
 Lateral collision rate

Collaboration with F. Laloë (ENS), J.-N. Fuchs & F. Piéchon (Paris-Sud)



Δ(E) = 2 π · 2.0 Hz x E/kT

γcoll = 2 π · 0.7 Hz x npk/1012 cm-3

ωex = 2 π ꞏ1.6 Hz x npk/1012 cm-3

Go away from compensation!
Increase Δ (B0 + 500mG)

Tune ISRE via atom density
Go from ωex << Δ to ωex ~ Δ

npk/1012 cm‐3

0.6

2.2

3.2

5.5

7.5

ISRE = 0

coll = 0

Interaction effect:
Final contrast 
increases with 
interaction

Revivals appear 
earlier for denser 
clouds

Direct demonstration: contrast revivals

C. Deutsch et al., PRL (2010)



Alternative model: Singlet-triplet
K. Gibble, Viewpoint on the Spin Self-Rephasing PRL (2010)

87Rb: Relevant scattering lengths are almost equal.
=> For two atoms: Singlet state shifted with respect to triplet state, as in fermions.
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νat

H‐Maser

Clock stability measurement



TACC Ramsey fringe

• Ramsey time: TR=5s
• Fourier-limited linewidth
• 85% contrast



Allan variance

Stability: 5.8 10-13 s-1/2



Relative frequency 
stability (10-13)

at 1 
shot

at 1 
sec

Measured 1.5 5.8

Temperature 1.0 3.9

Magnetic field 0.7 2.6

Local Oscillator 0.7 2.7

Quantum 
projection

0.4 1.5

N correction 0.3 1.3

Atom loss 0.3 1.1

Detection 0.3 1.1

Total estimate 1.5 6.0

32

Stability of a trapped‐atom clock on a chip,
R.Szmuk, V. Dugrain, W. Maineult, J. Reichel 
and P. Rosenbusch, PRA 92, 012106 (2015).

Stability budget



Clock frequency: Compensating the atom number dependence

Relative frequency
deviation over 18h

Reproducible
dependence on Nat



Atom number – clock frequency correlation



Magnetic field dependence

Magnetic field stability:   16 μG shot-to-shot
Temperature stability:     0.5 nK shot-to-shot



Perspectives

• Some “easy” improvements:
 Reduce dead time (MOT loading)
 Improve current source stability

• eeTACC: Use quantum technologies
 Spin squeezing
 Non-destructive detection





Quantum technologies for metrology



Two possible quantum enhancements
• Spin squeezing: Detection beyond the standard quantum limit

o detection → projective measurement → QPN

o For 𝑁 uncorrelated atoms, coherent spin state, 𝜎 ∝ 1/ 𝑁
o Limiting is reached our primary frequency standards (fountain clocks)

 Quantum correlations → spin squeezing
o Particularly interesting when atom number is limited

• QND detection for reducing dead time
o Can reduce Dick effect:

Local oscillator noise + dead time → aliasing effect
o Limiting compact clocks

 Quantum non-destructive (QND) detection
 Leading also to squeezing

Tool for both:  Cavity-QED



Readout: Continous parameter, but “digital” measurement

• Always measure some kind of interference fringe: Ramsey fringe (internal 
state), matter wave interference (external state)…

• Desired observable is position on fringe (continuous value), but each atom is 
a two-level system, yielding only 1 bit of information.

• With independent atoms, this leads to binomial statistics, as in coin tossing:

• When all technical noise is eliminated, this is a fundamental limit to 
quantum measurement with two-level systems.

• …Unless entanglement is used!

ωcωRF

|0

|1

N
1





Spin squeezing
• Metrology in AMO systems (and beyond):

Measuring an angle on a Bloch sphere

• Uncertainty relation constrains products of observables:

2/xyz JJJ 

2/atyz NJJ 
2
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Coherent spin state (CSS) Spin-squeezed state

N independent atoms
Tensor product state
Projection noise limit:

1/√Nat

Highly entangled state
Noise: like CSS with ξ2 times Nat

Ultimate (Heisenberg) limit: 1/Nat

Create by interaction or QND 
measurement

Spin-squeezed states are 
entangled!

Other entangled states 
with metrological gain 

exist as well.



Creating spin-squeezed states

• Squeezing by interaction

• Squeezing by nondestructive measurement

z z

y y

2
zSH 

“One-axis twisting”

Measure N2-N1 with sub-
shot noise resoution, 
without destroying their 
relative phase.

Implementation: collisional interaction or light shift in cavity

Implementation: two-color probe beams or cavity measurement



State of the art

Hosten, Nature 529, 505-508 (2016)

Cavity feedback Non demolition measurement

Collisional interactions in a BEC

Lange, arXiv:1708.02480 (2017)Gross et al., Nature 464, 1165–1169 (2010) Riedel, Nature 464, 1170-1173 (2010)

Leroux, PRL 104, 250801 (2010)

Applications are still at an elementary proof-of-principle level: 
4.5dB clock improvement @ 10-9 s-1/2.
No metrology-grade experiments yet.



State of the art: Some results

Leroux, et al. PRL 104, 250801(2010)

SQL 19dB

Hosten, et al. Nature 529, 505 (2016)

Bohnet, et al. Nature Photonics 8, 731 (2014)

- Appel, et al., PNAS 106. 10960 (2009)
- Vanderbruggen, et al. PRL 110, 210503 (2013)
- Vallet, et al. New J. Phys. 19, 083002, (2017)

Other QND schemes10dB

5.6dB
10.5dB

Spin squeezing and QND detection
@ metrological level of precision

10ିଵଷ range



Interlude: Spontaneous spin squeezing in a Rb BEC



Spin squeezing by atomic interaction

• Occurs naturally in BECs with two internal states |↑, |↓, due to interactions. 
Sørensen et al, Nature (2001)

• χ depends on scattering lengths:   a↑↑+a↓↓-2a↑↓.

z z

y y

2
zSH 

“One-axis twisting”

However, in 87Rb,   a↑↑≈a↓↓≈2a↑↓ so that   χ ≈ 0.

Solutions so far:
– State-dependent potentials on atom chip     Riedel et al, Nature (2010)

– Feshbach resonance in optical potential        Gross et al, Nature (2010)



Experiment

(2.7, 92, 74) Hz
BEC in a highly 
anisotropic
harmonic trap:

Two identically
trapped states:

High-performance
imaging:

|↓= |F=1,m=-1, |↑= |F=2,m=1
F=1

F=2

mF-2 -1 0 1 2

2-photon transition

~2 MHz

6.8 GHz

“Pure” BEC, N~8000

• BE-DD camera for high QE
• ARP to untrapped state, transfer 

efficiency 99.9%.
• Image both clock states on same frame 

Fringe recomposition
• Careful calibration



What’s the trick?

90<C<96% for TR=1.1s
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How to measure squeezing?

2


t0 1.1s

state
analysis

“Noise tomography”:

Repeat many times for every angle and compute standard deviation

…and also measure contrast

…and deduce the spin squeezing factor (“Wineland factor”):

4.03.1
.

4.
2

2

2

2
2 
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S

S
SN zz 



Spontaneous Spin Squeezing Result in TACC

Rotation angle [°]

Squeezing parameter:

dB with4.03.1
.

4.
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Possible application: Atom interferometers with BEC source



Outlook for spontaneous spin squeezing
Limit: Asymmetric losses

Possible application:

Atom interferometers using BECs as a source state.
See for example S. Abend et al, Atom Chip  Fountain Gravimeter, PRL 117, 203003 (2016).

In such instruments, spontaneous squeezing comes for free!



Towards a squeezing-enhanced compact atomic clock



Spin squeezing in optical cavities 

Atom-cavity interaction:
• Light shift of atomic transition 

(𝛿𝜔௔ ∝ 𝑁୮୦୭୲୭୬) 

• Cavity resonance shifted by spin 
population (𝛿𝜔௖ ∝ 𝑆௭)

𝑆௭ ൐ 0, Δ𝜙 ሶ ൐ 0

𝑆௭ ൏ 0, Δ𝜙 ሶ ൏ 0

Leroux, et al. PRL 104, 073602 (2010)

|0〉

|1〉

Cavity mode 𝜔௖

|0〉

|1〉

|e〉

𝜔௔
𝜔௔ ൅ 𝛿𝜔௔

𝛿𝜔௖

Light shifts

 One-axis twisting Hamiltonian ℋ ∝ 𝑆௭²

 spin population - phase shift correlation → squeezing of noise distribution



How to combine atom chip and Fabry-Perot cavity?

Solution: Fiber Fabry‐Pérot cavities



FFP: Fiber Fabry-Perot Microcavity

D. Hunger et al., 

New J Phys 12, 065038 (2010).

AIP Advances 2, 012119 (2012).

Laser-machined mirrors
on optical fibers

Molecules
ETH/

MPI Erlangen

Neutral atoms
Paris, Cambridge, 
Bonn, Munich (MPQ)

Ions
Innsbruck, Sussex, 
Cambridge / Bonn, 
Mainz, Boulder

NV centers
Saarbrücken,
Munich (MPQ/LMU)

Cavity
optomechanics

Yale, Paris, Konstanz

Quantum dots & wells
Paris&Zurich, NIST/JQI, Basel

CNTs
Paris (LPA&LKB)

Munich (LMU)

Finesse F>200000
ROC       R<10μm
Waist   w<1.5μm



Fiber Fabry-Perot cavities

CO2 Laser

• Measured rms roughness (AFM): σsc < 0.23 nm
• From cavity measurement:                 L = S+A ~ 15 ppm!
• Measured finesse up to                  F ~ 200000   (Brandstätter et al., RMP 2013)

• Radius of curvature down to R < 10µm
• Mode waist down to w0 < 1.5µm   (Mader et al., Nature Comm. 2015)

• Cooperativity  C > 100

Material evaporation + surface melting occuring simultaneously.
D. Hunger et al., New J Phys 12, 065038 (2010).

D. Hunger et al., AIP Advances 2, 012119 (2012).



780 nm : probe

1560 nm : 1D optical lattice

Fiber cavity:
Holes collapsed for 
mirror dot-milling

1560 nm
Multi-
mode
Fiber780 nm

Endlessly
single-mode

PCF

Phase shift engineering:

Fiber
780 nm

1560 nm

Couple all atoms to the cavity 



Mapping out the cavity modes with a SNOM tip

Transmission drops 
when the tip is at an 

antinode.

Input Transmission

Tip motion

L=130µm
g = 2π 93 MHz
F = 38000
κ = 2π 16 MHz
C = 90



Make a long cavity: >1mm

K. Ott et al., Optics Express 24, 9839 (2016)

Use multiple laser shots: “Laser dot milling”



CO2 laser dot milling at work

K. Ott, S. Garcia, R. Kohlhaas, K. Schüppert, P Rosenbusch, R. Long, J. Reichel, Opt. Express 24, 261274 (2016)

S. Garcia, F. Ferri, K. Ott, J. Reichel, R. Long, arXiv:1805.04089



eeTACC: Fiber cavities on atom chip

~400μm from chip surface

K. Ott, et al. Optics Express 24, 9839 (2016)

2 fiber Fabry-Perot cavities integrated on chip

• Compatible with  setup compactness
• Multi-shot CO2 laser milling for large mirror radius
• New millimeter-size fiber cavities
• 780 nm and 1560 nm coatings
• Low- and high-finesse (3k and 38k) for weak- and 

strong-coupling regimes
• Same PZT for light-free cavity locking

~500μm close



Cold atoms preparation on chip

MW guide

Transport “Omega” wireNew atom chip layout

MOT Resonators

Holding bridge + PZT pair



Cold atoms preparation on chip

Time

MOT

CM
O

T

M
ol

as
se

s

M
ag

. t
ra

p

EvaporationTransport

1.5 s 20ms 5ms 1.25s

Clock sequence –
cavity interaction

650ms

Low-finesse High-finesse

x

y



Atom transport

ቊ𝐵𝑥 ൌ 𝐵଴ cosሺ2𝜋𝛼𝑡ሻ
𝐵𝑦 ൌ 𝐵଴ sinሺ2𝜋𝛼𝑡ሻ

𝛼 ൌz

y
Low-finesse High-finesse

Rotation with “Omega” wire

“Parallel parking”

𝐼ஐ ൅

Chip surface

𝑔



Cold atoms inside “Cavity” trap

z

x

𝑔

1.2 mm

• RF evaporation at resonator position
• Tight magnetic trap
• (𝝎x, 𝝎y, 𝝎z) = 2𝝅 (0.1, 3.3, 3.3) kHz
• 1.25s exponential RF ramp

 Above BEC threshold:  4 ൈ 10ସ atoms
• Tz = 70 nK
• Tx = 25 nK

Low-finesse cavity mirrors

|1⟩

|2⟩
Cavity trap
• (𝝎x, 𝝎y, 𝝎z) = 2𝝅 (6, 60, 45) Hz
• 2.6s lifetime
• Trap center @ 400 μm from chip surf
• Overlap with optical cavity mode

• Clock states detection with ARP pulse



Cavity locking

14/06/2018IACI group meeting

• High-Finesse cavity, 1560 nm
• PDH error signal
• Digital PI servo control (RedPitaya)

 Locking bandwidth limited by 
strong mechanical resonances

Finite elements simulations



Locking bandwidth

14/06/2018IACI group meeting

• 12 pairs complex pole/zero implemented (up to 80 kHz)
• After PI optimization => Noise reduction up to 20kHz
• First mechanical resonance suppressed by more than 20 dB



Cavity QED signals!
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