

TACC – Trapped Atom Clock on a Chip: A testbed for the quantum physics of clocks

Jakob Reichel

Laboratoire Kastler Brossel, ENS, CNRS, Sorbonne Université, Paris

Systèmes de Référence Temps-Espace

Existing standards: There's a gap

•••

Stability: ~ 10⁻¹² s^{-1/2}

Stability <10⁻¹² s^{-1/2} and portable: Interesting for applications **Stability:** ~ 10⁻¹⁴ s^{-1/2}

beyond 10⁻¹² s^{-1/2}

Optical lattice clocks

- Interactions are important •
- Many-body effects ٠
- Quantum enhancement techniques are particularly promising

Outline

Part 1

- Trapped-atom clock on a chip (TACC)
- Spin self-rephasing
- Clock stability

Part 2

- Quantum enhancement techniques: QND detection and Spin Squeezing
- Spontanous spin squeezing
- ee-TACC: Towards quantum enhancement in a metrological environment

Trapped Atom Clock on a Chip – TACC

Atom Chips

Enabled by atom chip technology: BEC in microgravity

- 4.7 to 9 seconds free fall
- 110 meters falling height
- 3 drops per day
- 50 g max. at impact
- Payload area:
 173 cm height,
 60 cm diameter,
 234 kg max

Bremen drop tower (146m tall) ZARM Complete BEC experiment

QUANTUS collaboration: Universities of Hannover, Ulm, Darmstadt, Hamburg, Birmingham, Berlin (HU), Bremen (ZARM), Munich (LMU), Paris (ENS).

Trap shifts: Dephasing

potential and interactions shift the energy levels

ensemble of atoms will dephase (inhomogeneous broadening)

Solution: "Magic" fields

There can be a shift, but it is constant in space.

An ensemble of atoms stays in phase. Coherence is preserved.

Key idea in optical lattice clocks!

Long coherence time in a trap?

- Unperturbed clock frequency: ω_0
- Trapping potential perturbs transition: Differential Zeeman shift, $\omega_0 + \Delta(r)$
- Collisional interactions: density-dependent shift
- *Minimize these perturbations?*

Seminal work, ⁸⁷Rb in a magnetic trap:

D. M. Harber, H. J. Lewandowski, J. M. McGuirk, and E. A. Cornell, Effect of cold collisions on spin coherence and resonance shifts in a magnetically trapped ultracold gas, PRA **66**, 053616 (2002).

Zeeman shifts

FIG. 1. Differential Zeeman shift at low magnetic fields for the $|1\rangle \rightarrow |2\rangle(|F=1,m_f=-1\rangle \rightarrow |F=2,m_f=1\rangle)$ transition. The solid

Collisional mean-field shift

- μK temperatures -> s-wave scattering
- In ⁸⁷Rb, all relevant scattering lengths nearly equal: $a_{22}=95.47a_0$, $a_{12}=98.09a_0$, and $a_{11}=100.44a_0$

• Collisional shift proportional to density: $\Delta(r) \sim -n(r)$

FIG. 2. Measurement of the cold collision shift. Solid and open circles represent measurements of the normal cloud and condensate, respectively. The solid line is a fit to the normal cloud data $\Delta \nu_{12} = 0.1(0.4) - 3.9(0.3)10^{-13}n$; the dashed line is a fit to the condensate data $\Delta \nu_{12} = -0.1(1.4) - 1.9(0.2)10^{-13}n$ where $\Delta \nu_{12}$ is in Hz and *n* is in cm⁻³.

"Magic" field for ⁸⁷Rb

Lewandowski et al., PRL 88, 070403 (2002)

Can we do that on a chip?

Yes we can!

Ph. Treutlein et al., PRL 92, 203005 (2004).

<figure>

Coherence time $au_{
m coh}$ = 2.8 s

... seemed to agree with predictions:

Short-term Allan variance dominated by ambient magnetic field fluctuations.

Can we reach a relevant range for compact clocks?

Stability: ~ 10⁻¹² s^{-1/2}

Target stability: ~ 10⁻¹³ s^{-1/2} range

Stability: ~ 10⁻¹⁴ s^{-1/2}

TACC: Trapped-Atom Clock on a Chip

- Coplanar waveguide for microwave excitation
- Incorporate atomic clock know-how and techniques:
 - Two-layer magnetic shielding
 - Stable, low-noise current sources
 - Interrogation: homebuilt frequency chain with low phase noise, locked on H maser
 - + lots of SYRTE know-how

TACC: Trapped-Atom Clock on a Chip

Ramsey measurement

C. Deutsch et al PRL 105, 020401 (2010)

- Magnetic trap, $\{\omega_x, \omega_y, \omega_z\}/2\pi = \{32(1), 97.5(2.5), 121(1)\}$ Hz
- Evaporative cooling to 175nK (30nK above T_c)
- 25000 atoms
- Ramsey spectroscopy.
 Vary Ramsey time (but keep trapping time constant).

"Identical Spin Rotation Effect" (ISRE)

Origin: forward collisions of indistinguishable particles

- spin-aligned collisions:
- f/b scattering is indistinguishable
- => 2 x exchange interaction energy

anti-parallel spins:

f/b scattering is maximally distinguishable

=> 1 x exchange interaction energy

partially aligned spins: calculate superposition of the above

=> exchange interaction energy creates torque on spins

before collision

after collision

A very general effect arising from indistinguishability

Known to cause spin waves

PRL 88, 230404, 2002 PRL 103, 010401, 2009

E. P. Bashkin, JETP Lett. **33**, 8 (1981); C. Lhuillier and F. Laloe, J. Phys. **43**, 197 and 225 (1982)

Spin self-rephasing

A quantum effect caused by particle statistics

Full model

Collaboration with F. Laloë (ENS), J.-N. Fuchs & F. Piéchon (Paris-Sud)

- Motion treated semiclassically
- Full quantum treatment of spin
- Trap frequencies are fastest => Δ depends only on energy
- Interaction becomes "long-ranged in energy space"
- Results in a classically-looking equation for Bloch vector.
- Three experimentally tunable parameters:
 - Inhomegeneity $\Delta_0(T, \bar{n}, .$
 - ISRE rate

- $\Delta_0(T, \bar{n}, \ldots)$ $\omega_{\rm ex} \propto |a_{01}|\bar{n}$
- Lateral collision rate $\gamma_c \propto a_{01}^2 \bar{n} \sqrt{T}$
- Prediction for our conditions:
 Contrast decay time 100 s
 (Experiment is limited by asymmetric loss of |0> and |1>)
- Can make predictions for wide range of parameters

Direct demonstration: contrast revivals

Increase Δ (B0 + 500mG)

Go away from compensation!

Tune ISRE via atom density Go from $\omega_{ex} << \Delta$ to $\omega_{ex} \sim \Delta$
$$\begin{split} \Delta(E) &= 2 \ \pi \cdot 2.0 \ \text{Hz x E/kT} \\ \gamma_{\text{coll}} &= 2 \ \pi \cdot 0.7 \ \text{Hz x n}_{\text{pk}} / 10^{12} \ \text{cm}^{-3} \\ \omega_{\text{ex}} &= 2 \ \pi \cdot 1.6 \ \text{Hz x n}_{\text{pk}} / 10^{12} \ \text{cm}^{-3} \end{split}$$

Alternative model: Singlet-triplet

K. Gibble, Viewpoint on the Spin Self-Rephasing PRL (2010)

87Rb: Relevant scattering lengths are almost equal.

=> For two atoms: Singlet state shifted with respect to triplet state, as in fermions.

Clock stability measurement

TACC Ramsey fringe

- Ramsey time: $T_R = 5s$
- Fourier-limited linewidth
- 85% contrast

Allan variance

Stability: 5.8 10-13 s^{-1/2}

Stability budget

Stability of a trapped-atom clock on a chip,
R.Szmuk, V. Dugrain, W. Maineult, J. Reichel
and P. Rosenbusch, PRA 92 , 012106 (2015).

1-	Relative frequency stability (10 ⁻¹³)	at 1 shot	at 1 sec
ĸ	Measured	1.5	5.8
1	Temperature	1.0	3.9
	Magnetic field	0.7	2.6
	Local Oscillator	0.7	2.7
	Quantum projection	0.4	1.5
	N correction	0.3	1.3
	Atom loss	0.3	1.1
	Detection	0.3	1.1
	Total estimate	1.5	6.0

Clock frequency: Compensating the atom number dependence

Atom number – clock frequency correlation

Magnetic field dependence

Magnetic field stability: 16 µG shot-to-shot Temperature stability: 0.5 nK shot-to-shot

Some "easy" improvements:

- Reduce dead time (MOT loading)
- Improve current source stability

• eeTACC: Use quantum technologies

- Spin squeezing
- Non-destructive detection

Quantum technologies for metrology

Two possible quantum enhancements

• Spin squeezing: Detection beyond the standard quantum limit

- \circ detection \rightarrow projective measurement \rightarrow QPN
- For N uncorrelated atoms, coherent spin state, $\sigma \propto 1/\sqrt{N}$
- Limiting is reached our primary frequency standards (fountain clocks)
 - \blacktriangleright Quantum correlations \rightarrow spin squeezing
- Particularly interesting when atom number is limited

QND detection for reducing dead time

- Can reduce Dick effect: Local oscillator noise + dead time \rightarrow aliasing effect
- Limiting compact clocks
 - > Quantum non-destructive (QND) detection
 - Leading also to squeezing

Tool for both: Cavity-QED

Readout: Continous parameter, but "digital" measurement

• Always measure some kind of interference fringe: Ramsey fringe (internal state), matter wave interference (external state)...

- Desired observable is position on fringe (continuous value), but each atom is a two-level system, yielding only 1 bit of information.
- With independent atoms, this leads to binomial statistics, as in coin tossing:

$$\Delta \varphi \ge \frac{1}{\sqrt{N}}$$

- When all technical noise is eliminated, this is a fundamental limit to quantum measurement with two-level systems.
- ... Unless entanglement is used!

Spin squeezing

N independent atoms Tensor product state Projection noise limit: 1/√N_{at} Highly entangled state Noise: like CSS with ξ² times N_{at} Ultimate (Heisenberg) limit: 1/N_{at} Create by interaction or QND measurement

Creating spin-squeezed states

Squeezing by interaction

Implementation: collisional interaction or light shift in cavity

• Squeezing by nondestructive measurement

Implementation: two-color probe beams or cavity measurement

State of the art

Cavity feedback

Leroux, PRL 104, 250801 (2010)

Non demolition measurement

Hosten, Nature 529, 505-508 (2016)

Collisional interactions in a BEC

Gross et al., Nature 464, 1165–1169 (2010) Riedel, Nature 464, 1170-1173 (2010)

Lange, arXiv:1708.02480 (2017)

Applications are still at an elementary proof-of-principle level: 4.5dB clock improvement @ 10⁻⁹ s^{-1/2}. **No metrology-grade experiments yet.**

State of the art: Some results

Other QND schemes

- Appel, et al., PNAS 106. 10960 (2009)
- Vanderbruggen, et al. PRL 110, 210503 (2013)
- Vallet, et al. New J. Phys. 19, 083002, (2017)

Spin squeezing and QND detection @ metrological level of precision 10^{-13} range

10²

Interlude: Spontaneous spin squeezing in a Rb BEC

Spin squeezing by atomic interaction

"One-axis twisting"

- Occurs naturally in BECs with two internal states |↑⟩, |↓⟩, due to interactions. Sørensen et al, Nature (2001)
- χ depends on scattering lengths: $a_{\uparrow\uparrow} + a_{\downarrow\downarrow} 2a_{\uparrow\downarrow}$.

However, in ⁸⁷Rb, $a_{\uparrow\uparrow} \approx a_{\downarrow\downarrow} \approx 2a_{\uparrow\downarrow}$ so that $\chi \approx 0$.

Solutions so far:

- State-dependent potentials on atom chip Riedel et al, Nature (2010)
- Feshbach resonance in optical potential Gross et al, Nature (2010)

Experiment

BEC in a highly anisotropic harmonic trap:

(2.7, 92, 74) Hz "Pure" BEC, *N*~8000

Two identically trapped states: $|\downarrow\rangle = |F=1,m=-1\rangle, |\uparrow\rangle = |F=2,m=1\rangle$

High-performance imaging:

- BE-DD camera for high QE
- ARP to untrapped state, transfer efficiency 99.9%.
- Image both clock states on same frame
 Fringe recomposition
- Careful calibration

What's the trick?

How to measure squeezing?

Repeat many times for every angle and compute standard deviation

...and deduce the spin squeezing factor ("Wineland factor"):

$$\xi^{2} = \frac{N.\Delta S_{z}^{2}}{\left\langle S \right\rangle^{2}} = \frac{4\Delta S_{z}^{2}}{N.C^{2}}$$

Spontaneous Spin Squeezing Result in TACC

Possible application: Atom interferometers with BEC source

Outlook for spontaneous spin squeezing

Possible application:

Atom interferometers using BECs as a source state.

See for example S. Abend et al, Atom Chip Fountain Gravimeter, PRL **117**, 203003 (2016).

In such instruments, spontaneous squeezing comes for free!

Towards a squeezing-enhanced compact atomic clock

Spin squeezing in optical cavities

Atom-cavity interaction:

- Light shift of atomic transition $(\delta \omega_a \propto N_{\rm photon})$
- Cavity resonance shifted by spin population ($\delta \omega_c \propto S_z$)

- ➢ One-axis twisting Hamiltonian $\mathcal{H} \propto S_z^2$
- \succ spin population phase shift correlation \rightarrow squeezing of noise distribution

How to combine atom chip and Fabry-Perot cavity?

Solution: Fiber Fabry-Pérot cavities

FFP: Fiber Fabry-Perot Microcavity

Saarbrücken, Munich (MPQ/LMU)

Fiber Fabry-Perot cavities

Material evaporation + surface melting occuring simultaneously. D. Hunger et al., New J Phys 12, 065038 (2010).

D. Hunger et al., AIP Advances 2, 012119 (2012).

- Measured rms roughness (AFM): $\sigma_{sc} < 0.23 \text{ nm}$
- From cavity measurement:
- Measured finesse up to
- Radius of curvature down to
- Mode waist down to
- Cooperativity

- $L = S + A \sim 15 \text{ ppm!}$
- $F \sim 200000$ (Brandstätter et al., RMP 2013)
 - $m c R < 10 \mu m$
 - $w_0 < 1.5 \mu m$ (Mader et al., Nature Comm. 2015)
 - C > 100

Couple *all* atoms to the cavity

780 nm : probe 1560 nm : 1D optical lattice

Phase shift engineering:

Mapping out the cavity modes with a SNOM tip

Transmission drops when the tip is at an antinode.

Make a *long* cavity: >1mm

Use multiple laser shots: "Laser dot milling"

K. Ott et al., Optics Express 24, 9839 (2016)

CO2 laser dot milling at work

K. Ott, S. Garcia, R. Kohlhaas, K. Schüppert, P Rosenbusch, R. Long, J. Reichel, Opt. Express **24**, 261274 (2016) S. Garcia, F. Ferri, K. Ott, J. Reichel, R. Long, arXiv:1805.04089

eeTACC: Fiber cavities on atom chip

2 fiber Fabry-Perot cavities integrated on chip

- Compatible with setup compactness
- Multi-shot CO₂ laser milling for large mirror radius
- New millimeter-size fiber cavities
- 780 nm and 1560 nm coatings
- Low- and high-finesse (3k and 38k) for weak- and strong-coupling regimes
- Same PZT for light-free cavity locking

K. Ott, et al. Optics Express 24, 9839 (2016)

~500µm close

~400µm from chip surface

Cold atoms preparation on chip

Atom transport

6 α = -90° α = 90° $\alpha = 0^{\circ}$ 1 4 2 0 م × -2 ₿_{ext} $\vec{\mathsf{B}}_{\mathsf{ext}}$ B_{ext} -4 -6 -6 -4 -2 -2 0 2 -6 -2 0 2 2 4 4 0 4 6 -4 -4 6 y [mm] y [mm] y [mm] Chip surface gZ∕∖∖ $\alpha = 2.0$ ⇒y

Rotation with "Omega" wire

$$I_{\Omega} + \begin{cases} Bx = B_0 \cos(2\pi\alpha t) \\ By = B_0 \sin(2\pi\alpha t) \end{cases}$$

Cold atoms inside "Cavity" trap

Cavity locking

Finite elements simulations

IACOG/20102meeting

Locking bandwidth

- 12 pairs complex pole/zero implemented (up to 80 kHz)
- After PI optimization => Noise reduction up to 20kHz
- First mechanical resonance suppressed by more than 20 dB

IACOG/20102meeting

Cavity QED signals!

Acknowledgements

Friedemann Reinhard Clément Lacroûte Christian Deutsch Vincent Dugrain Ramon Szmuk Konstantin Ott Théo Laudat **Mengzi Huang**

Fernando Ramirez-Martinez Wilfried Maineult **Tommaso Mazzoni** Peter Rosenbusch **Observatoire** SYRTE Carlos Garrido Alzar Systèmes de Référence Temps-Espace Jakob Reichel PhD position available!

