Optical lattice clocks & time scale as an application

Tetsuya Ido

Space-Time Standards Laboratory National Institute of Information and Communications Technology Japan

NICT (Japan) : not an NMI, but generates, maintain, and disseminate Japan Standard Time

outline

- Dawn in optical lattice clocks
 - Laser cooling of alkaline earth atoms
 - Recoil-free spectroscopy of neutral atoms
- Japan Standard Time
- Absolute frequency measurement with respect to International atomic time (TAI)
- Time scale
- TAI evaluation using strontium

Quantum nature often helps metrologists

No microwave

With microwave Shapiro step

Josephson junction

Energy level of atoms are also discrete.

 \rightarrow Atomic clock

Quantum hall effect

Definition of the second

Cs hyper fine transition since 1967

Transfer from astronomy to atomic physics

Current SI second: Cs hyperfine transition

But optical transition has...

- Doppler broadening
- ~GHz(10⁻⁵) at room temprature.
- 100kHz(10⁻⁹) even lasercooled sample
 In other words, <u>external degree</u> is still classical

- Accuracy limited around 2e-16 in recent 5 years
- 10 days averaging required to reach the accuracy of 2e-16
- \rightarrow long operation hampers further improvement

Optical clocks are "in principle" much faster due to the high line-Q. 1e-15@1s or better should be possible.

Quantization of external degree

Optical dipole trap using interference fringe allows tight confinement.

But

Need to cool down to μ K regime. No magnetic sublevel prohibits polarization gradient cooling Intensity dependent systematic shift \rightarrow non-sense for freq. standard..

- Suppression of radiation trapping; $\gamma < \hbar k^2/m$ (recoil shift; 9.4kHz)
- Recoil limited temperature
- Stable trapping under gravity; $a_{\text{max}} = \hbar k \gamma / 2m (155 \text{m/s}^2)$
- Two stage cooling

2-stage MOT for Strontium to reach μK regime

Narrow Line MOT for High Phase Space Density

Accumulate atoms with broad band laser in large trap volume

Decrease blue-detuned wing of the laser spectrum

Experimental Procedure

Experimetnal Parameter

Blue MOT δ =70MHz, $T_{blue} \sim mK$, dB/dz = 160G/cm

- Red MOT

Broad spectrum :

Center Frequency:-1.6MHzModuration Frequency:50kHzBandwidth: $3MHz (k_b v_b \sim 500kHz)$ Duration:50-100msecdB/dz:Ramped $3 \rightarrow 4-10G/cm$

```
Single frequency:
```

detuning: $\delta = -50^{\sim}-300$ kHz ($\gamma = 8$ kHz)Total power density: $I = 10\mu \sim 5$ mW/cm²($I_{sat} = 3\mu$ W/cm²)dB/dz: $4^{\sim}10$ G/cm

10

Red MOT Fluorescence Decay

TOF Measurements for atoms in the MOT

Temperature vs Laser Power Density

Simultaneous control of induced dipole potentials for cooling transition

A strong laser light couples states *connected by dipole transitions*. Cooling ground & excited states can be controlled *independently*.

Light shifts for ${}^{1}S_{0} \& {}^{3}P_{1}$ states $P = 2W / \pi (23 \mu m)^2$ 400 200 Stark shift (kHz) 0 <u>m</u>,=0, **Ε**:π -200 -400 *m*₁=+1, *E*:σ⁺+σ⁻ **∿**F -600 $5s5p^{3}P_{1}$ -800 *m*₁=0, *E*:σ⁺+σ⁻ 600 1000 1200 400 800 Laser wavelength (nm) ' ₂_R =689nm COOLING Equal light shifts at λ ~800-900 nm $5s^{2}S_{0}$ Far Off Resonant Trap

Absorption image of atoms in the FORT

16

TOF Measurements

Phase Space Density

Cold Sr atoms in the Lamb-Dicke regime

Sideband cooling in an optical lattice

Experimental configuration: 1D FORL

Peak frequency vs lattice laser polarization

same AC stark shift

Wavelength dependence of stark shifts

Center frequency v.s. Lattice laser intensity

No evidence of higher-order stark shiftMagic wavelength at 914nm

Suppression of photon-recoil shift in LDR

Ido and Katori, Physical Review Letters 91, 053001 (2003).

Quantization of external degree

Optical dipole trap using interference fringe allows tight confinement.

But

Need to cool down to μ K regime. No magnetic sublevel prohibits polarization gradient cooling Intensity dependent systematic shift \rightarrow non-sense for freq. standard..

Coherent spectroscopy Q ~ 2.4x 10¹⁴

Transition Linewidth (Hz)

Secondary representation of the second (SRS)

Frequency combs proposed in late 90s easily provide coherent link of optical frequency to (microwave) SI second.

Optical clocks became SI traceable. \rightarrow

lon trap

Transitions with uncertainty in same level as the best Cs recognized as SRS \rightarrow

	и _{SRS} (Е-16)	и _{sys} (Е-17)	# of labs
Al+	19	0.9	1
Hg+	19	1.9	1
Yb+(E3)	6	0.3	2
Yb+(E2)	6	3.2	2
Sr+	15	2.2	2

 $u_{\rm SRS}$: uncertainty as a substitute of Cs. Limited by Cs

 u_{sys} : uncertainty as an optical frequency standard

of labs: # which reported frequency to CCTF.

Lattice clock

Sr

Japan Standard Time (JST)

JST employed only Cs clocks before 2006. But since 2006, Cs and H-maser have been combined to get better stability in short term too.

JST generation

HM frequency was steered to ensemble of 18 Cs clock

Time scale

JST : Time scale generation

Timescale

Clocks for generating UTC(NICT) :

Cs 5071A : 18 (ensemble timescale) Anritsu H-Masers : 1(source) + 2(backup)

The behavior of UTC(NICT) :

| UTC – UTC(NICT) | < 20 ns. stability ~ 5x10⁻¹⁶@1d, 2x10⁻¹⁵@10~30d

JST : Time scale generation

Timescale

Clocks for generating UTC(NICT) :

Cs 5071A : **18** (ensemble timescale) Anritsu H-Masers : **1**(source) + **2**(backup)

■<u>The behavior of UTC(NICT)</u>:

| UTC – UTC(NICT) | < 20 ns. Stability ~ 2E-15 @ 10-30d.

Accuracy conservative: 5e-14 (employed for calibration service) Standard deviation: <4e-14

24hours, 7days a week

Current status of UTC(k)

Reliable fountains enable real-time steering of UTC(k).

Why not optical clocks?

Particularly for emerging countries, getting difficult to assign young talents to fountains.

JST Kobe sub-station in becoming ready

Distributed generation of JST

- Kobe sub-station is scheduled to begin time-keeping in June 2018
- 2 H-maser & 5 Cs clocks
- Primary purpose is a backup of Koganei HQ against disasters

(JST has never stopped in more than 40 years)

Operation mode:

- 1. Copy of Koganei HQ
- 2. Independent operation
- 3. JST as an ensemble of all clocks operated in 4 stations

Dissemination service of Japan Standard Time

Absolute frequency measurement using International Atomic Time

Absolute frequency measurement using TAI

Time = phase?

Atomic physicists, particularly in optical, always think frequency. When they draw graph, optical phase never show as vertical axis.

Why? Probably, optical phase is fragile. Easily jump and so on (coherence)

On the other hand, those in timescale like phase. Our phase always have the unit of "rad". But their phase often has the unit of "s". What's happen? No absolute phase. Phase is always difference of two signals.

Why don't we think "fractional frequency difference" instead of absolute frequency when we compare two signals.

 \rightarrow

Time integration of fractional frequency difference shows relative phase in unit of second.

$$\phi_1 - \phi_2 = \Delta \phi = \int \frac{\Delta f}{f_0} dt = \int \frac{f_1 - f_2}{\bar{f}} dt$$

Time (phase) difference Δ_i and Δ_f at two instances which are separated for T

$$(f_2 - f_1)/f_0 = -\frac{\Delta_f - \Delta_i}{T}$$

Circular T shows this $\Delta =$ UTC-UTC(k). This formula lead fractional frequency difference between UTC & UTC(k)

TAI-based frequency measurement @ lab. "k" Calibration of TAI

Suffers from link uncertainties But not dependent on specific Cs fountain

Reported from BIPM

Goal is to get this ratio

What lab k measures or calculate.

In future, this process will calibrate the TAI using a lattice clock

	ν(Sr@k) ν(HM)	$\frac{\nu(HM)}{\nu(UTC(k))}$	$\frac{\nu(UTC(k)}{\nu(TAI)}$	$\frac{\nu(TAI)}{\nu(SI)}$
Link uncertainty	negligible	2e-16	9.8e-16@5day (satellite link)	~ 2-5e-16 (Cs, satellite)
Minimum Averaging Time	1 second	1 second	5 days	1 month

Suffers from dead time uncertainty

 $\overline{\nu(UTC(k))}_{10000s} \neq \overline{\nu(UTC(k))}_{5days}$

 $\overline{\nu(TAI)}_{5days} \neq \overline{\nu(TAI)}_{1month}$

Link from Sr to TAI

$$A = \int_{Day0}^{Day5} (y_{UTC(k)} - 1) dt = [UTC(k) - UTC]_{Day5} - [UTC(k) - UTC]_{Day0}$$

Temporal average of frequency difference = <u>Variation of the time difference</u>

Measurement

How much clocks deviate from linear drift?

Allan variance (= two sample variance) is insensitive to constant frequency difference.

 \checkmark

Raise the # of variance.

Three sample variance (Hadamard variance) is insensitive to constant difference of frequency drift rate.

<u>3-sample variance (Hadamard variance)</u>

$$\frac{1}{6(M-2)} \sum_{i=1}^{M-2} [y(i+2) - 2y(i+1) + y(i)]^2 = \frac{1}{6(N-3)\tau^2} \sum_{N=1}^{N-3} [x(i+3) - 3x(i+2) + 3x(i+1) - x(i)]$$

		TABLE III	
Ту	pical Noise Types Name	Optimum Prediction $r(\tau_{i})$ rms ^a	Time Error: Asymptotic Form
2	white-noise PM	$\tau_p \cdot \sigma_y(\tau_p)/\sqrt{3}$	constant
1	flicker-noise PM	$\sim \tau_p \cdot \sigma_v(\tau_p) \sqrt{\ln \tau_p/2 \ln \tau_0}$	$\sqrt{\ln \tau_p}$
0	white-noise FM	$\tau_n \cdot \sigma_n(\tau_n)$	$ au_p^{1/2}$
-1	flicker-noise FM	$\tau_{p} \cdot \sigma_{y}(\tau_{p})/\sqrt{\ln 2}$	τ_{p}
-2	random-walk FM	$\underbrace{\tau_p \cdot \sigma_y(\tau_p)}$	$ au_{ ho}^{3/2}$

 ${}^{a}\tau_{p}$ is the prediction interval.

Ref. D. W. Allan, IEEE Trans. Ultrasonic, Ferro. Freq. Control UFFC-34, 647 (1987).

Phase noise during two operation separated τ : $\tau \sigma(\tau)/(\ln 2)^{1/2}$

Link from TAI to SI second

BIPM tells us the calibration of TAI in 1-month average basis. The TAI in previous slide is 5-day average.

$$C = \int_{Day0}^{Day30} (y_{TAI(k)} - 1) dt$$
$$\overline{\nu(TAI)}_{5days} \neq \overline{\nu(TAI)}_{1month}$$

Uncertainty of this deviation 7.6e-16

Evaluation using three 5-day campaigns

G. Petit at BIPM time departmentcalculated the TAI calibration on three5-day averages of our measurementcampaigns

CIPM#(2017): ... 873.0

Appl. Phys. B **123**, 34 (2016).

Day of average	campaign #1	campaign #2	campaign #3
30 (Cir. T)	-4.4 (2.6)	-2.7(2.5)	-2.3 (2.6)
5 (by Petit)	-2.5 (8.1)	-6.8 (8.2)	-4.5 (7.4)
			(×10 ⁻¹⁶)

	30day	5day	
Statistical	10		
Sr systematic	9		
Gravity	8	}	
Dead time (HM-UTC(k))	19		
Satellite link	69		
Dead time(TAI-SI second)	76	0	
TAI-SI second	25	57	
Total	109	93	
		(× ⁴⁹ 10 ⁻¹⁷)	

Furthermore... 10 day campaign X 3 + two HM ensemble Benefit of 5-day →10-day

Fitting uncertainty \downarrow UTC(NICT)-UTC error \downarrow

Ensemble of two HMs may mitigate sporadic phase excursion of one HM

		○ 70 4	
		ット 13.4	
		87 (F	
		් පි 73.2	
		$> \infty$	
		ank	
		00 jú	
			┝╺╋╎┧╴╶┸╎┨╴╴╎┵┻╴╺
		22	▶
		0 72.6	■ [⊥] ■ HMa →
		hs 42	
		< 70.4	
		/2.4	
			#1 #2 #3 Total
			Campaign
	Campaign	Total	
	$\# 2 (10^{-17})$	(10^{-17})	
Strontium	_		Due to the error in linear fitting
statistical	2	1	Due to the error in inear fitting
systematic	6	6	
Gravity	2	2	/ Due to the dead time error
Local flywheel oscillator			
deterministic	18	10	Those two uncortainty could be
stochastic (dead time)	10	6	
Link			not independent.
UTC-UTC(NICT) link	49	28	
UTC- SI second	(50)		
systematic uncertainty	15	14	
rest of random part	48	26	
Total	73		< 5e-16

Continuity of the S second

Last 5 data: std. deviation 6e-17 < Cs type-B uncertainty Will be no jump on the redefinition (Possible jump inside the current Cs ability of realization) But contribution of more Cs clocks is expected.

Optical – microwave hybrid time scale using Sr lattice clock

Optical clocks utilized for time scale

Optically steered time scale

• Reference to compare with: UTC, TT(BIPM16)

Advantage of "optical" steering

- 10⁴ s of operation is sufficient to evaluate the scale unit of a HM at mid-10⁻¹⁶ level
- Short term fluctuation of HM may be compensated by an optical clock.
- Not necessary to operate all the time. once in a week for 3 hours

Steering by intermittent operation of Sr lattice clock

- HM frequency and drift rate calibrated by Sr
- Adjustment of PMS offset frequency every 4 hours
- No servo to reduce the time offset UTC-T_Sr
- Based on our frequency* obtained in 2015

Intermittent operation more than once a week for 10⁴ s continued

*429 228 004 229 872.97 Hz (Hachisu et al., Appl. Phys. B **34**, 123 (2017)) ... 873.2 Hz (CIPM2015) → ... 873.0 Hz (CCTF WGFS, Jun 2017)

INTERMITTENT Evaluation of a HM for 6 monthsby Sr and UTC(NICT)

Comparison against UTC & TT(BIPM16)

 Clearly detect the frequency offset of UTC

- Phase difference against TT(BIPM16)
 < 1ns after 5months
- Stability 4e-16 @ 20 days

H. Hachisu et al., Sci. Rep. 8, 4243 (2018)

* D. Allan, IEEE Trans. Ultrasonic. Ferro. Freq. Cont., **34** 647 (1987) 61

Simulation in worse HM & infrequent OFS operation

HM2 (dash) noisier than HM1 (solid) (HM2 Flicker floor: 5e-16)

Blue: once per week, orange and green: once per two weeks (odd, even) ⁶²

Evaluation of TAI scale interval

Strontium is not the definition of the second.

Does it calibrate TAI scale interval equivalently or even more accurately?

Table 1: Estimate of *d* by individual PSFS measurements and corresponding uncertainties. All values are expressed in 10^{-15} and are valid only for the stated period of estimation.

Standard	Period of	d	$u_{\rm A}$	$u_{\rm B}$	u _{l/lab}	u _{l/Tai}	и	$u_{\rm S}$ rep Ref $(u_{\rm S})$	Re
	Estimation	\square					\frown		
PTB-CS1	58299 58329	-1.03	8.00	8.00	0.00	0.13	11.31	PFS/NA	Т
PTB-CS2	58299 58329	-5.28	5.00	12.00	0.00	0.13	13.00	PFS/NA	Т
SYRTE-FOI	1 58299 58329	0.56	0.25	0.34	0.06	0.26	0.50	PFS/NA	Т
SYRTE-FO2	2 58314 58329	0.30	0.30	0.23	0.07	0.49	0.62	PFS/NA	Т
PTB-CSF2	58294 58314	1.15	0.10	0.21	0.09	0.19	0.31	PFS/NA	Т
SU-CsFO2	58299 58329	0.24	0.28	0.24	0.13	0.85	0.93	PFS/NA	Т
)			~			
							roulor T	/1.1	

Matoo:

Circular T (July 2018)

SYRTE reported the calibration by Sr in 4 of (<20day) estimation period.

Longer estimation period is better owing to reduced $u_{1/Tai}$

Secondary representation of the second suffers u_{Srep} of 0.40 (CIPM2017#), which is 0.17Hz.

Evaluation of one-month mean TAI scale interval by Sr

Effects	Uncertainty (10 ⁻¹⁷)
Sr systematic	6
Gravity	2.2
Hydrogen maser	
deterministic	25
stochastic (dead time)	18
Phase measurement	5
UTC-UTC(NICT) link	26 (30 days average)
Sr frequency (uSrep)	40 (CIPM 2017)
Total	57 (40 w/o uSrep)

Result: Evaluation of TAI scale interval by Sr

Various link activities in NICT

- Fiber link to UT
- Two-way satellite link to PTB, KRISS
- VLBI (Very Long Baseline Interferometry) link to INRIM (ongoing)

Fiber link of clocks located at NICT and UT

Frequency difference & stability between distant Sr clocks

Frequency difference

Frequency difference after correcting systematic frequency shift

Agreement between institutes for the 1st time in 10⁻¹⁶ level !

Atsushi Yamaguchi Appl. Phys. Express 4, 082203 (2011).

Schematic diagram of a direct frequency comparison using a geostationary satellite

- [2] N. Huntemann et al., PRL109, 213002(2012)
- [3] St. Falke et al., arXiv:1312.3419(2013)

Uncertainty budget & result

	Uncertainty (10 ⁻¹⁶)
Systematics	
TWCP link	10 [*]
Sr clock @NICT	2
Sr clock @PTB	0.4
Gravitational red shift	1
Total systematics	10
Statistics	12
Total all	16

Average of fractional difference : 1.1 \times 10⁻¹⁵

$$\frac{f(NICT)}{f(PTB)} - 1 = 1.1(1.6) \times 10^{-15}$$

[*] M. Fujieda et al., Metrologia 51, 253 (2014)

NICT-KRISS Yb/Sr measurement using TWCP

UTC(NICT)-UTC(KRISS) simultaneously measured using TWCP and IPPP technique.

They agreed in 10⁻¹⁷ level.

2) Yb/Sr ratio measurement using TWCP

4h X 3 = 12h campaign. Mid 10^{-16} level in one day.
Frequency Link INRiM-INAF/IRA-NICT by VLBI

Joint research for precise frequency comparison with VLBI among INRiM,INAF/IRA, and NICT since 2017. Transportable small antenna(2.4m diameter) pair is used as nodes of comparison. In 2018 July, one of the 2.4m antenna was installed at Medicina VLBI station of INAF/IRA.

Test VLBI experiment from this August. If there are no problem, the first clock comparison experiment in this fall.

 τ_{23}

NICT: National Institute of Information and Communications Technology, Japan

Installation of 2.4m Broadband antenna to INAF/Medicina and the first VLBI on 14th Aug. Broadband(3-14GHz) VLBI observation

