

Trapped Ion Optical Clocks

Rachel Godun

"Optical Clock School 2018", Gressoney la Trinité, 10th – 14th Sep 2018

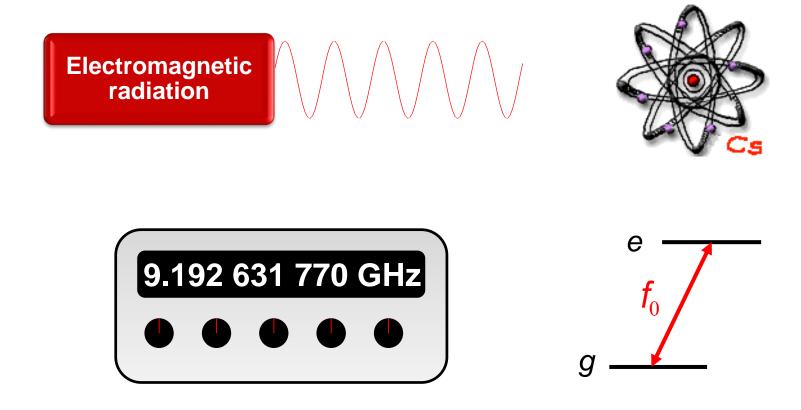
Optical clocks with 10⁻¹⁸ uncertainty

European consortium working to reach 10⁻¹⁸ uncertainties by 2019

Outline

- Atomic clocks based on caesium
- The role of optical clocks
- Single-ion optical frequency standards
- Minimising systematic frequency shifts
 - Motion
 - Electric fields
 - Magnetic fields
 - Gravity
- Optical frequency metrology
 - Stability, absolute frequencies and ratios
- Summary and future perspectives

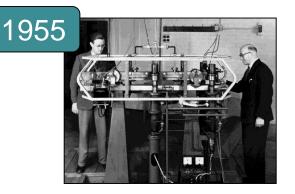
Outline



Atomic clocks based on caesium

- The role of optical clocks
- Single-ion optical frequency standards
- Minimising systematic frequency shifts
 - Motion
 - Electric fields
 - Magnetic fields
 - Gravity
- Optical frequency metrology
 - Stability, absolute frequencies and ratios
- Summary and future perspectives

Atomic clock frequency standard basics

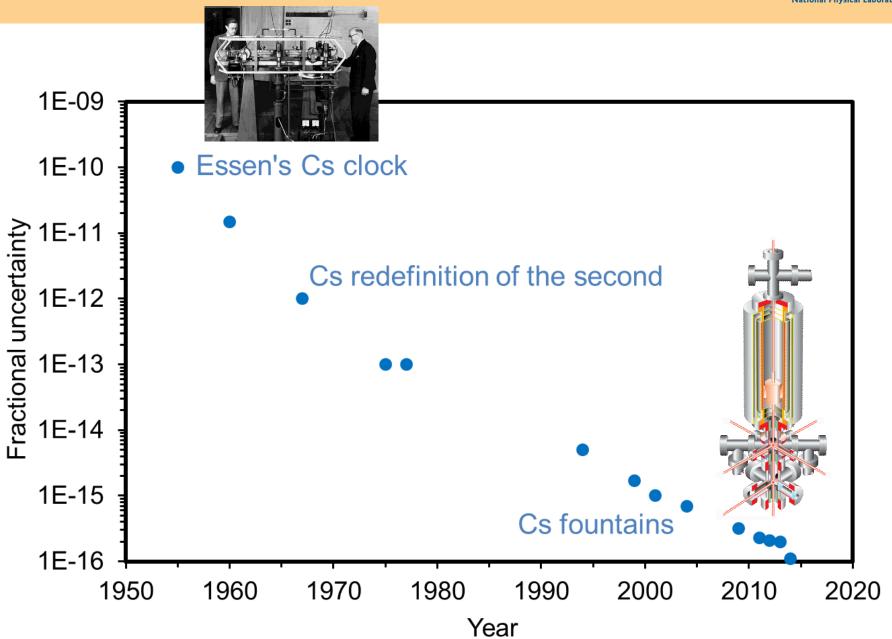


Tune the frequency of the radiation to drive an atomic transition

Introduction of atomic time



First caesium atomic frequency standard developed at NPL by Essen & Parry, accurate to 1 part in 10¹⁰

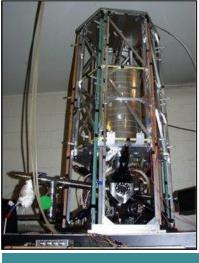

1967

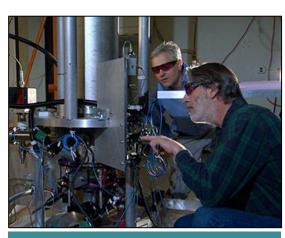
The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom.

The best caesium fountain primary frequency standards now have accuracies of $1 - 2 \times 10^{-16}$

Improvements in caesium atomic clocks

Cs fountain primary frequency standards




NPL-CsF2

INRIM ITCsF2

LNE-SYRTE FO2-Cs

NIST-F2

PTB-CSF2

NPL Commercial

Cs clocks are widely used

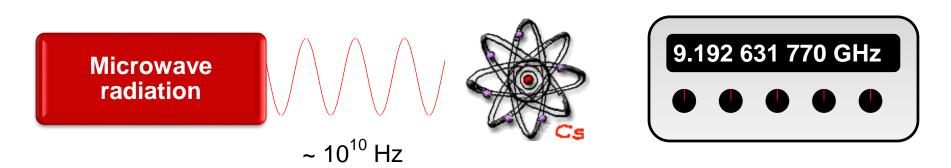
Network synchronisation

Navigation

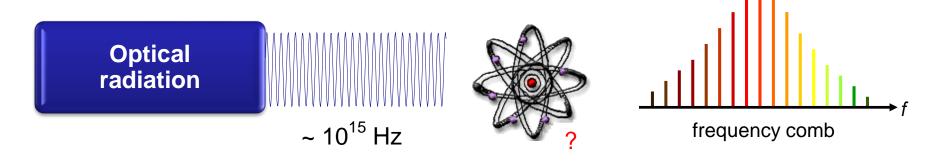
International time scale

Patrizia Tavella

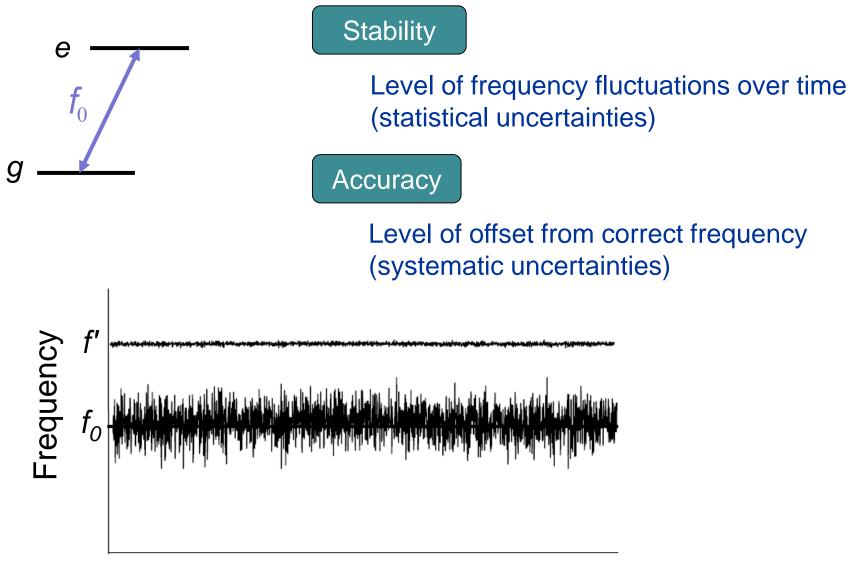
Outline



- Atomic clocks based on caesium
- The role of optical clocks
- Single-ion optical frequency standards
- Minimising systematic frequency shifts
 - Motion
 - Electric fields
 - Magnetic fields
 - Gravity
- Optical frequency metrology
 - Stability, absolute frequencies and ratios
- Summary and future perspectives


Optical clock basics

Caesium clock


Optical clock

Yann Le Coq

Performance of a frequency standard

Time

Advantage of optical frequency standards

Stability:

Fractional instability
$$\sigma(\tau) = \frac{\Delta \nu}{\nu} \frac{\eta}{(S/N)} \sqrt{\frac{T}{\tau}}$$

	Microwave	Optical
$\Delta \nu$	~ 1 Hz	~ 1 Hz
V	~ 10 ¹⁰ Hz	~ 10 ¹⁵ Hz
reach 10 ⁻¹⁵	~ 1 day	~ seconds

Accuracy:

Microwave	Optical
~ 10 ⁻¹⁵ - 10 ⁻¹⁶	~ 10 ⁻¹⁷ - 10 ⁻¹⁸

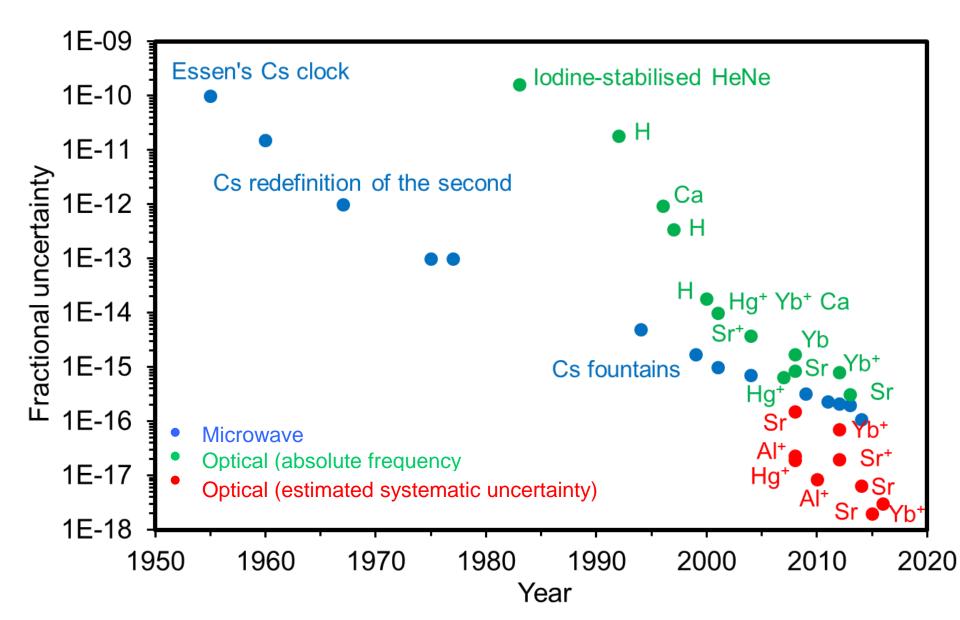
= linewidth

 Δv

 \mathcal{V}

Т

τ

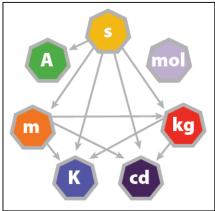

η

- = optical frequency
- (S/N) = signal-to-noise ratio
 - = probe time
 - = total averaging time
 - 1 depends on probing technique and shape of resonance

$$g = \frac{e}{\frac{v}{1}}$$
 linewidth = Δv

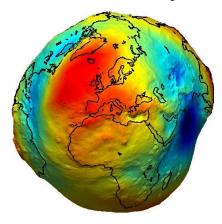
Improvements in optical clocks

What difference does this make?

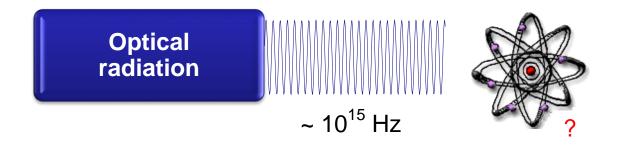


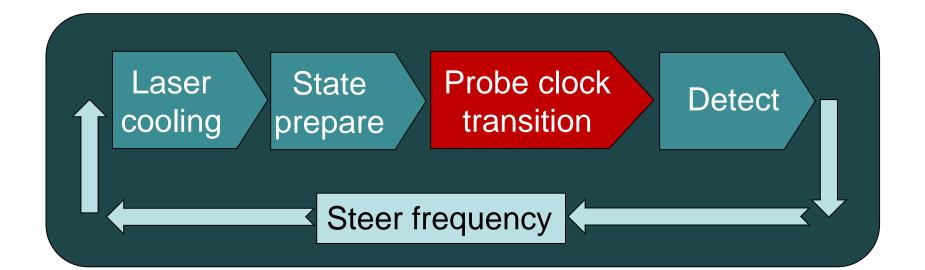
Impact of optical clocks

Greater accuracy and stability opens up yet more opportunities for atomic clocks

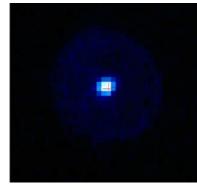


Fundamental physics


Geodesy



Astronomy, GNSS



What could possibly go wrong?

- Whether neutral atom or ion, need to think about: <u>Fundamental</u>: motion, E-fields, B-fields, gravitational effects
- Each setup may also have other issues to avoid <u>Technical:</u> shutter leakage / collisions / servo offsets / frequency chirps ...
- Single ions are good because almost an isolated atom at rest

 Atoms good because large number gives better S/N

Fractional instability

$$\sigma(\tau) = \frac{\Delta \nu}{\nu} \frac{\eta}{(S/N)} \sqrt{\frac{T}{\tau}}$$

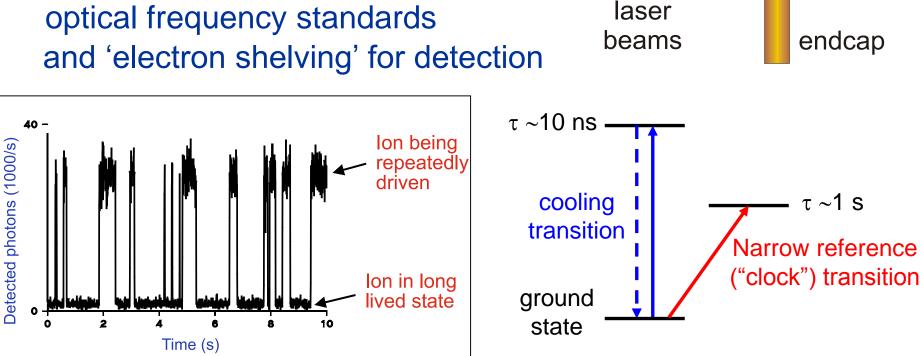
Outline

- Atomic clocks based on caesium
- The role of optical clocks

Single-ion optical frequency standards

- Minimising systematic frequency shifts
 - Motion
 - Electric fields
 - Magnetic fields
 - Gravity
- Optical frequency metrology
 - Stability, absolute frequencies and ratios
- Summary and future perspectives

Ion clocks


Paul trap

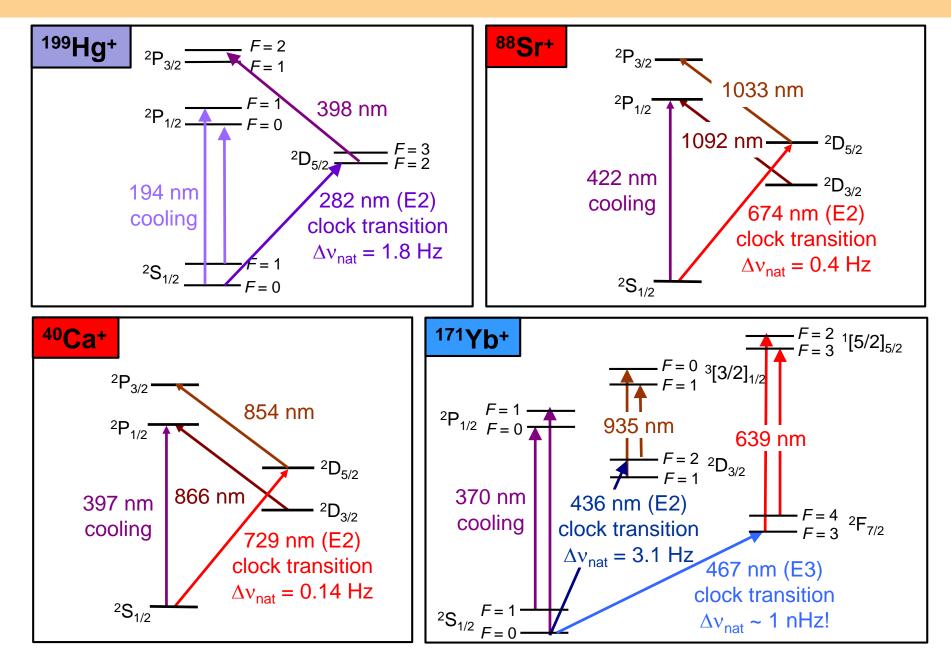
ion

Nobel Prize 1989 Dehmelt, Paul, Ramsey

Dehmelt proposed using ions for optical frequency standards

[H. Dehmelt, IEEE Trans. Instrum. Meas. IM-31(2), 83 (1982)]

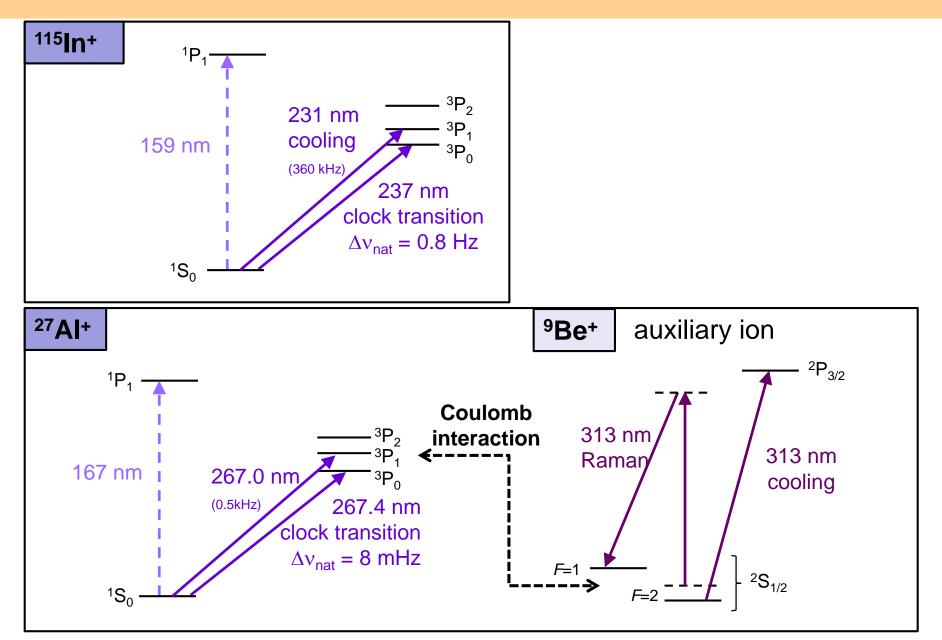
Candidate systems (1)



H ¹ Li	Be														He ² 10 Ne		
Na ¹¹	¹² Mg												Si	P ¹⁵	¹⁶	CI	¹⁸ Ar
¹⁹	²⁰ Ca	21 Sc	²² Ti	V ²³	Cr ²⁴	25 Mn	Fe	27 Co	28 Ni	cu ²⁹	³⁰ Zn	Ga ³¹	Ge	As	se Se	35 Br	³⁶ Kr
Rb ³⁷	³⁸ Sr	³⁹ Y	Zr ⁴⁰	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	Pd	Ag	Cd	49 In	50 Sn	Sb	Te ⁵²	53 	Xe
Cs	⁵⁶ Ba	57 La	72 Hf	⁷³ Ta	74 W	⁷⁵ Re	⁷⁶ Os	77 Ir	Pt	⁷⁹ Au	80 Hg	81 TI	Pb	⁸³ Bi	⁸⁴ Po	At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	89 Ac	¹⁰⁴ Unq	¹⁰⁵ Unp	¹⁰⁶ Unh	¹⁰⁷ Uns	¹⁰⁸ Uno	¹⁰⁹ Une	¹¹⁰ Unn								

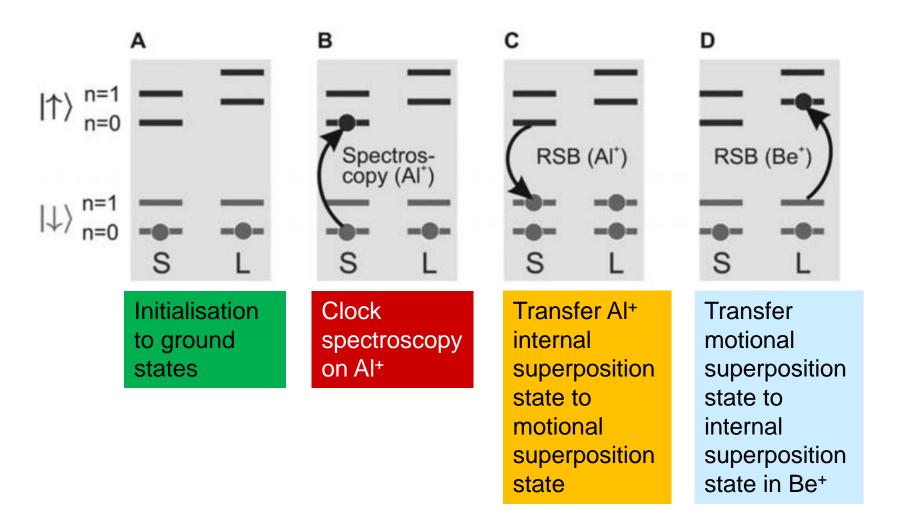
С	58 Ce	Pr	60 Nd	Pm			64 Gd	⁶⁵ Tb	⁶⁶ Dy	67 Ho	68 Er	⁶⁹ Tm	70 Yb	⁷¹ Lu
Т	90 h	91 Pa	92 U	93 Np	94 Pu	95 Am		-	Of 98	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	102 No	103 Lr

Alkali-like systems


Candidate systems (2)

H	Ions with atomic structure													He ²			
Li	Be	4												N ⁷	0 ⁸	F	¹⁰ Ne
Na ¹¹	¹² Mg												Si	15 P	5 S	CI	¹⁸ Ar
¹⁹	²⁰ Ca	21 Sc	Ti	23 V	Cr ²⁴	25 Mn	Fe ²⁶	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	Ge	As	se Se	35 Br	36 Kr
Rb	38 Sr	³⁹ Y	Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	46 Pd	Ag	⁴⁸ Cd	49 In	50 Sn	51 Sb	Te	53 	Xe
Cs	56 Ba	57 La	72 Hf	⁷³ Ta	74 W	75 Re	⁷⁶ Os	₇₇ Ir	Pt	79 Au	80 Hg	81 TI	Pb	⁸³ Bi	⁸⁴ Po	At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	89 Ac	¹⁰⁴ Unq	105 Unp		107 Uns	¹⁰⁸ Uno	¹⁰⁹ Une	Unn								

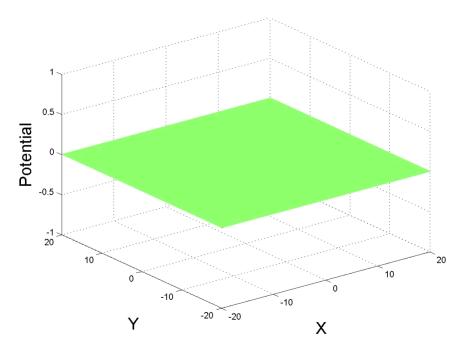
Ce	Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	63 Eu	64 Gd	⁶⁵ Tb	⁶⁶ Dy	67 Ho	⁶⁸ Er	69 Tm	70 Yb	⁷¹ Lu
Th ⁹⁰	91 Pa	U ⁹²	93 Np	94 Pu	95 Am	96 Cm	97 Bk	Of 98	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	102 No	103 Lr


Alkaline-earth-like systems

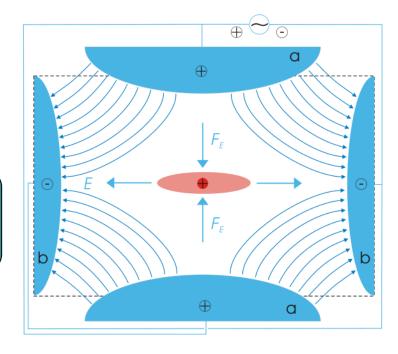
Aluminium ion clock

Quantum logic spectroscopy

[P.O. Schmidt et al., Science 309, 749 (2005)]

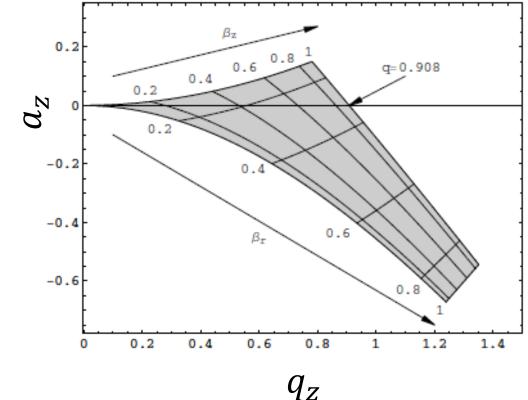

Principles of ion trapping

Quadrupole potential:


$$V(t) = A(t) (r^2 - 2z^2)$$

$$V(t) = \varepsilon (V_{dc} + V_{ac} \cos \Omega t) \frac{(r^2 - 2z^2)}{2r_o^2}$$

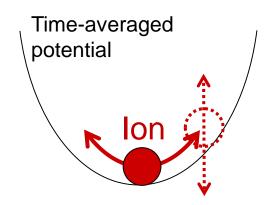
Radiofrequency voltage applied to top and bottom electrodes


→ ion trapped in time-averaged pseudo-potential minimum

Stable solutions

 Pseudo-potential gives stable trapping for parameters in the shaded region

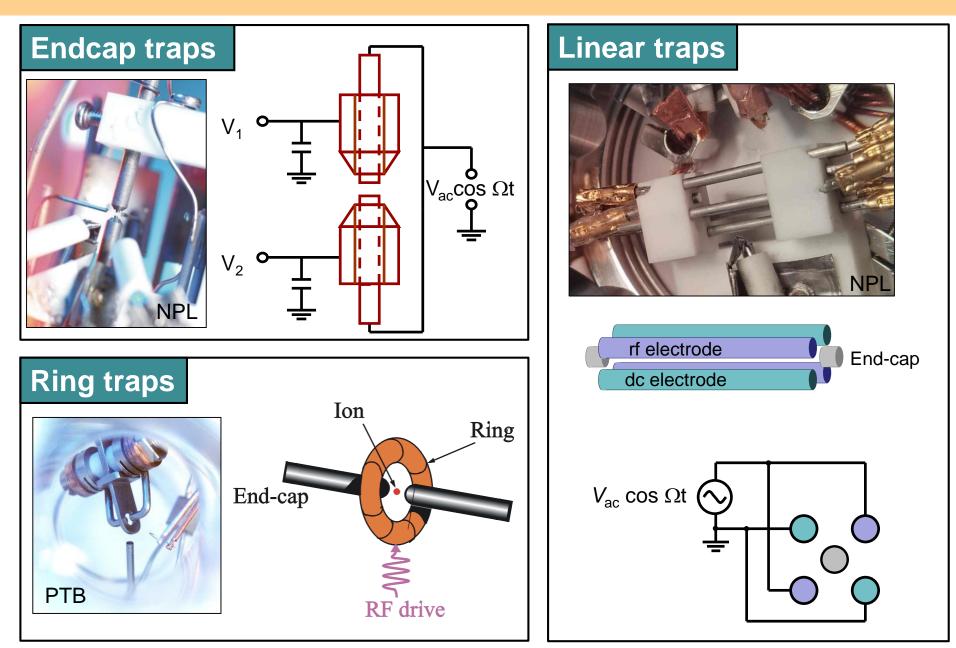
where
$$a_z = \frac{-8e\varepsilon V_{dc}}{mr_o^2\Omega^2}$$
 and $q_z = \frac{4e\varepsilon V_{ac}}{mr_o^2\Omega^2}$


Stable ion motion can be separated into two parts:

Thermal motion associated with time-averaged confining potential (characteristic frequencies ω_r and ω_z)

Micromotion

Driven oscillatory motion at frequency Ω (vanishes at trap centre)

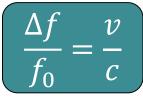


Mathematical solution for ion's position:

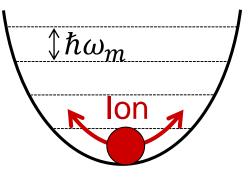
$$z(t) = \bar{z} + z_a \cos(\omega_z t) - z_a \frac{q_z}{2} \cos(\omega_z t) \cos(\Omega t) - \bar{z} \frac{q_z}{2} \cos(\Omega t)$$

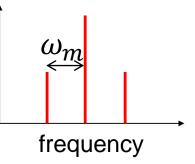
Ion traps for optical frequency standards

Outline

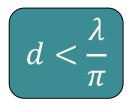

- Atomic clocks based on caesium
- The role of optical clocks
- Single-ion optical frequency standards

Minimising systematic frequency shifts


- Motion
- Electric fields
- Magnetic fields
- Gravity
- Optical frequency metrology
 - Stability, absolute frequencies and ratios
- Summary and future perspectives

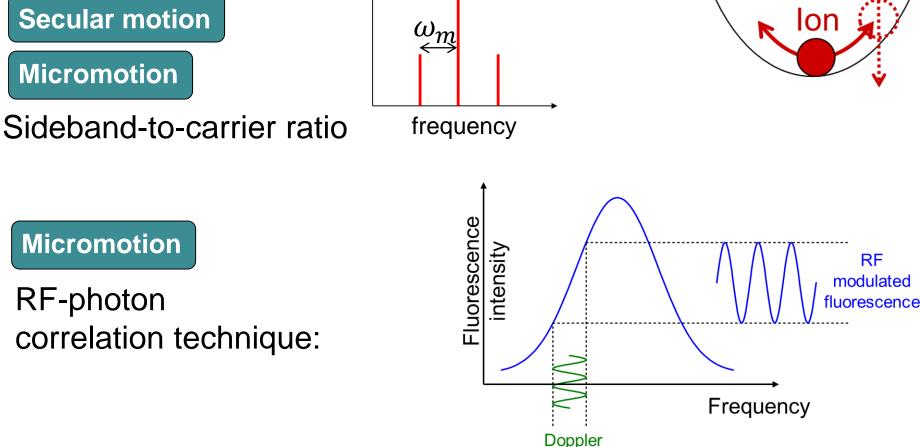

Ion motion causes Doppler shifts

Motion leads to Doppler shift through



- For unconfined ion at 1mK, Doppler broadening gives FWHM of optical probe ~ 1MHz
- **Confined** ion in harmonic potential

Sidebands negligible if weak modulation, i.e. small enough amplitude of motion



 $d < \frac{\lambda}{\pi}$ Lamb-Dicke criterion - eliminates 1st order Doppler broadening

Ion motion causes Doppler shifts

 2nd order Doppler shifts (relativistic time dilation) still present so need to measure residual motion

shift

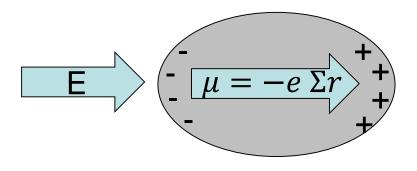
[J. Keller et al., J. Appl. Phys. 118, 04501 (2015)]

 $2c^{2}$

 Δf

Outline

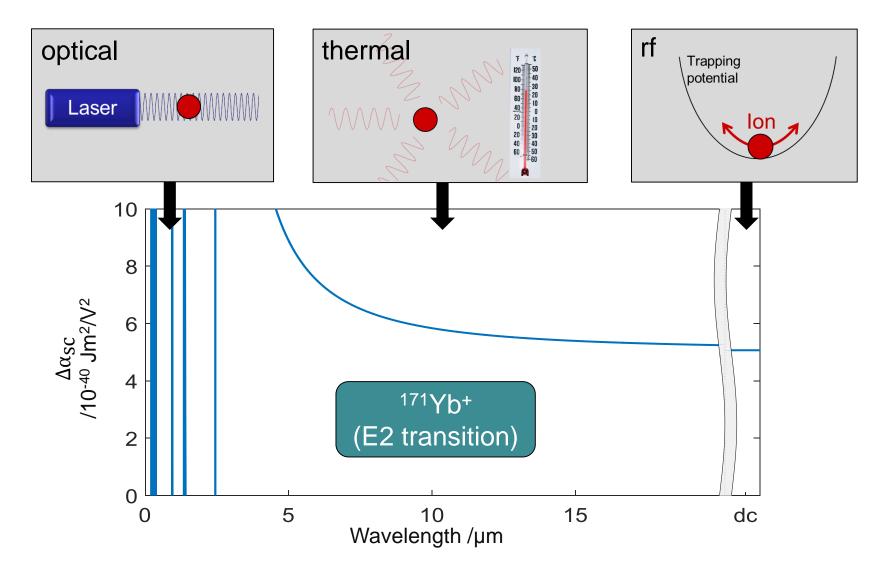
- Atomic clocks based on caesium
- The role of optical clocks
- Single-ion optical frequency standards


Minimising systematic frequency shifts

- Motion
- Electric fields
- Magnetic fields
- Gravity
- Optical frequency metrology
 - Stability, absolute frequencies and ratios
- Summary and future perspectives

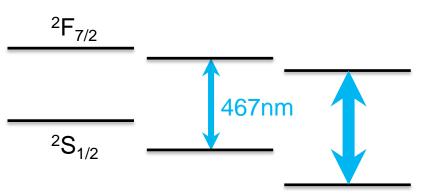
Electric fields cause Stark shifts

External electric fields induce a dipole moment in the ion,

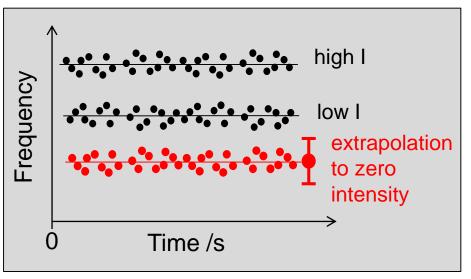

then interact with that induced dipole as a 2nd order effect (shifts proportional to E²)

[J. R. P. Angel and P. G. H. Sandars, Proc. Roy. Soc. A **305**, 125 (1968)]

Electric fields cause Stark shifts

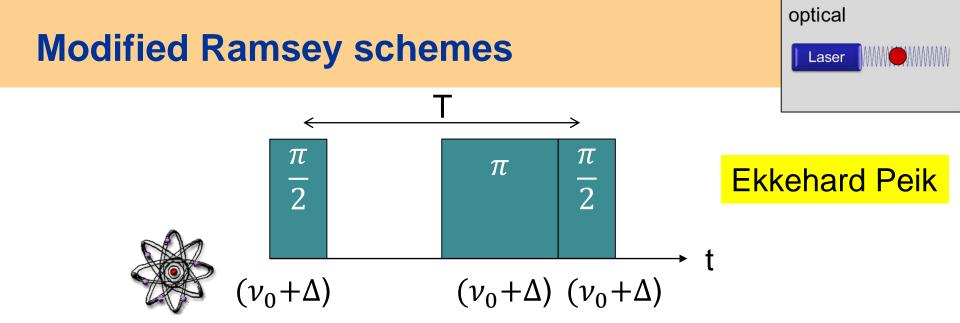


Different frequency electric fields, so different polarisabilities



Stark shift – optical

- Strong extinction of cooling and repumper beams is vital
- Negligible shift due to probe laser at typical intensities (exception is 467 nm E3 transition in ¹⁷¹Yb⁺)



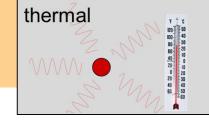
Can interleave high/low power probes and extrapolate, or use a modified Ramsey scheme

optical

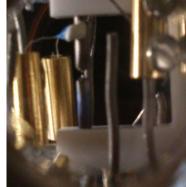
Laser

- Problem: need to step frequency by exactly Δ to avoid shift
- Or else:
- Insert π pulse to reduce sensitivity of any error in the step
- Invert phase of π pulse to reduce sensitivity to pulse area
- Interleave sequences with 90 deg phase shifts on $\pi/2$ pulses
- Interleave sequences with different T auto balanced Ramsey

PRL 109, 213002 (2012); Phys. Rev. A 93, 010501 (2016); PRL 120, 053602 (2018)

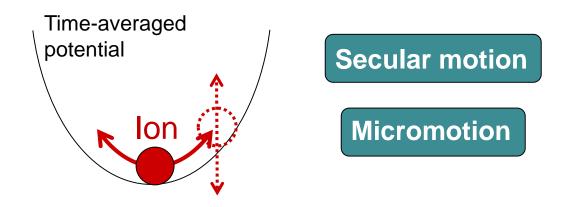

Stark shift – thermal

- One of the hardest shifts to determine
- Blackbody radiation:


$$\langle E^2 \rangle = 8.55 \times 10^{-5} T^4 (V^2/m^2)$$

$$h\Delta f = -\frac{1}{2}\Delta\alpha_{\rm SC}E^2$$

- Difficult to characterise E-field when it's not a blackbody distribution
- Ion mostly 'sees' trap structure. Need to characterise temperature rise and emissivities of all components, or use thermal imaging
- $\Delta \alpha_{sc}$ (and hence BBR shift & uncertainty) generally smaller for ions than neutral atoms



Thermal image of trapping region (18-22°C)

Stark shift – rf trapping

 Motion in the trap leads not only to Doppler shifts, but also to the ion experiencing a time-averaged non-zero electric field

rf

Trapping potential

lon

Measure the motion to deduce:

Velocity \rightarrow Amplitude of motion $\rightarrow \langle E^2 \rangle \rightarrow$ Stark shift

 Note that some polarisabilities are negative and some are positive [A. Ludlow *et al.* Rev. Mod. Phys., **87**, No. 2 (2015)]

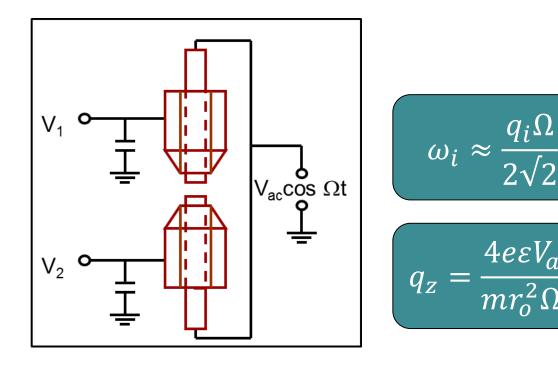
Magic trap drive frequency for Sr⁺ and Ca⁺

Micromotion will cause both a Doppler and a Stark shift

$$\frac{\Delta v_{\mu}}{v_{0}} = -\left(\frac{\Omega}{\omega_{0}}\right)^{2} \left[1 + \left[\frac{\Delta \alpha_{0}}{\hbar \omega_{0}} \left(\frac{m \Omega c}{e}\right)^{2}\right]\right] \sum_{x,y,z} R_{i}$$
Time-averaged potential
Doppler Stark

 Sr⁺ and Ca⁺ have negative Δα, so Doppler & Stark shifts cancel at the 'magic trap drive frequency'

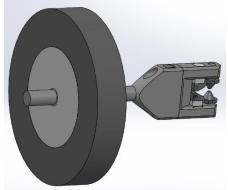
$$\Omega_0 = \frac{e}{m c} \sqrt{-\frac{\hbar \omega_0}{\Delta \alpha_0}}$$


- Sr⁺: 14.4 MHz
- Ca⁺: 24.6 MHz

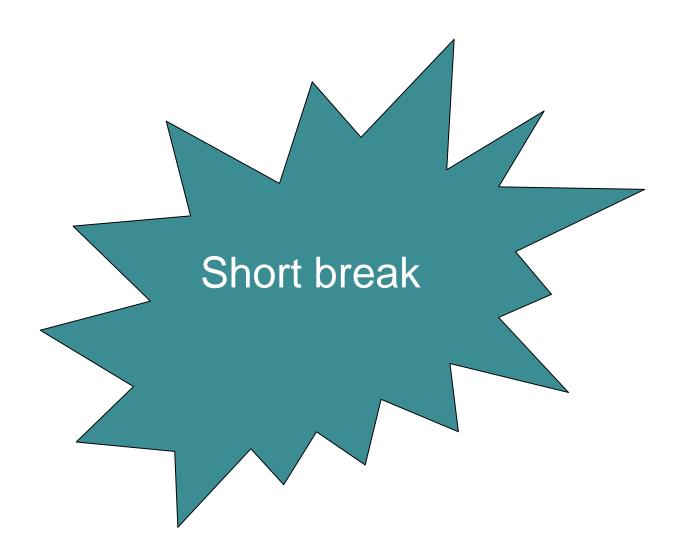
[P. Dubé et al., Phys. Rev. Lett. 112, 173002 (2014)]

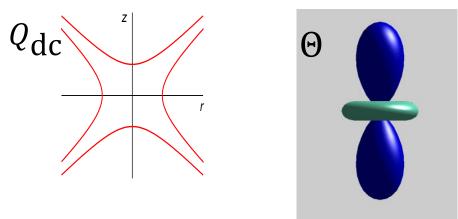
Designing traps to minimise shifts

- Motional effects \rightarrow want low ion motional heating rate
 - Avoid noise on electrical signals and surface contaminants
 - Use large separation, *d* between rf electrodes (ion heating = $1/d^{\alpha}$, where $2 < \alpha < 4$)
 - Operate with large Ω (and hence V_{ac}) to achieve large ω_i



Designing traps to minimise shifts


- Thermal E-fields → want low temperature rise
 - Operate with low V_{ac} to minimise dielectric heating, and increase separation between V_{ac} and ground


- Careful choice of materials
- Polish electrode surfaces to increase emissivity
- rf E-fields \rightarrow want no residual fields at trap centre
 - Symmetric connections to rf electrodes
 - Compensation electrodes in pairs

Electric field gradients cause quadrupole shifts

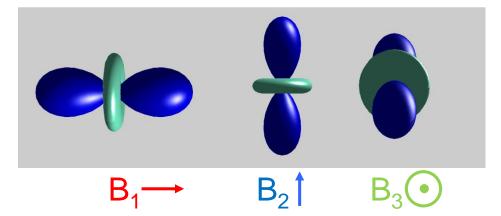
Electric field gradients interact with electric quadrupole moments

- States with ang. mom. $J \ge 1$ possess a quad. Mom., eg. ${}^{2}D_{5/2}$, ${}^{3}P_{1}$.
- Lattice clock transitions ${}^{1}S_{0} {}^{3}P_{0}$ are free from this effect

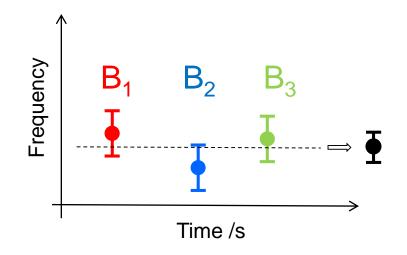
$$\Delta f \propto Q_{dc} \cdot \Theta \cdot (3m_F^2 - F(F+1)) (3\cos^2\beta - 1)$$
quadrupole quadrupole magnetic qu. angle between quadrupole field axis clock state clock state & quadrupole moment

Quadrupole moments for various systems

- No quadrupole moment in $^{115}In^+$ or $^{27}Al^+$ because $^{1}S_0 {}^{3}P_0$
- For other systems, shift may be several Hz or more, so must be nulled.


[A. Ludlow et al. Rev. Mod. Phys., 87, No. 2 (2015)]

Nulling the quadrupole shift

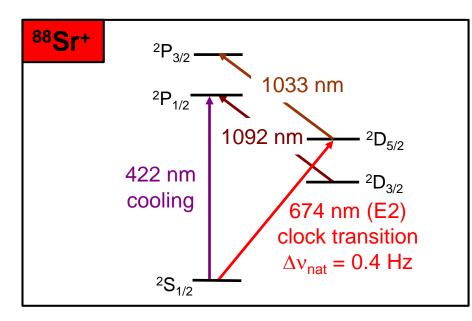


$$\Delta f \propto (3\cos^2\beta - 1)$$

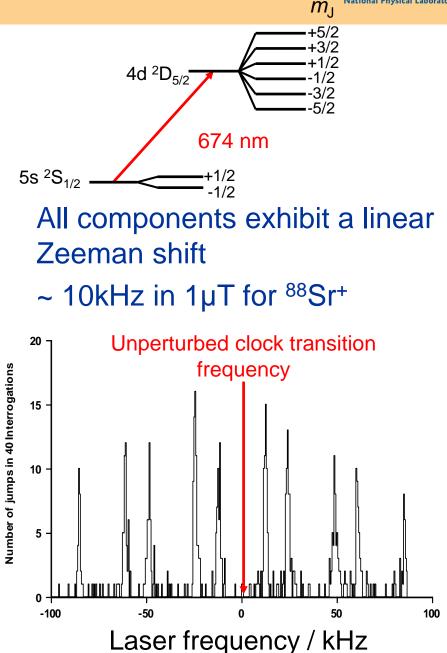
 β = angle between B-field and E-field gradient

- Measure in three orthogonal B-field directions
- (Alternatively, measure 3 different pairs of Zeeman states)
- $(3\cos^2\beta 1)$ averages to zero

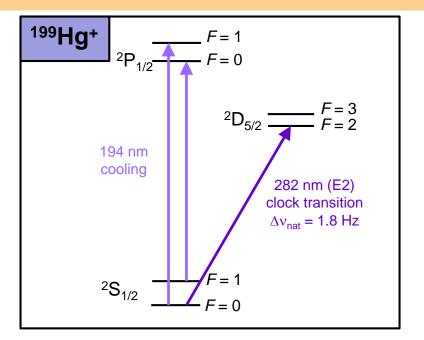
Outline


- Atomic clocks based on caesium
- The role of optical clocks
- Single-ion optical frequency standards

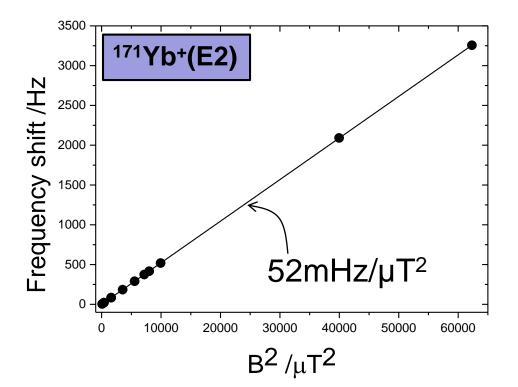
Minimising systematic frequency shifts


- Motion
- Electric fields
- Magnetic fields
- Gravity
- Optical frequency metrology
 - Stability, absolute frequencies and ratios
- Summary and future perspectives

Magnetic fields – 1st order Zeeman shifts



Eliminated by probing two Zeeman components symmetrically placed about line centre, and taking the average frequency.



Magnetic fields – 2nd order Zeeman shifts

 2^{nd} order Zeeman shift, $\Delta v = \kappa B^2$ For odd isotope ions, with half-integer nuclear spin, can probe $m_F = 0 - m_F = 0$,

so there is no 1st order Zeeman shift.

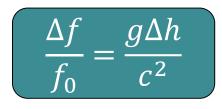
	Ca⁺	Sr+	Yb+ E2	Yb+ E3	Hg⁺	Al+	In+
2 nd order coefficient Hz/mT ²	+14.355	+3.1223	+52,096	-2,030	-18,900	-71.988	+4.09
2 nd order Zeeman relative magnitudes							

• The purple bars are $1,000 \times \text{larger}$

[A. Ludlow et al. Rev. Mod. Phys., 87, No. 2 (2015)]

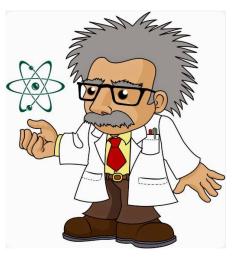
Outline

- Atomic clocks based on caesium
- The role of optical clocks
- Single-ion optical frequency standards


Minimising systematic frequency shifts

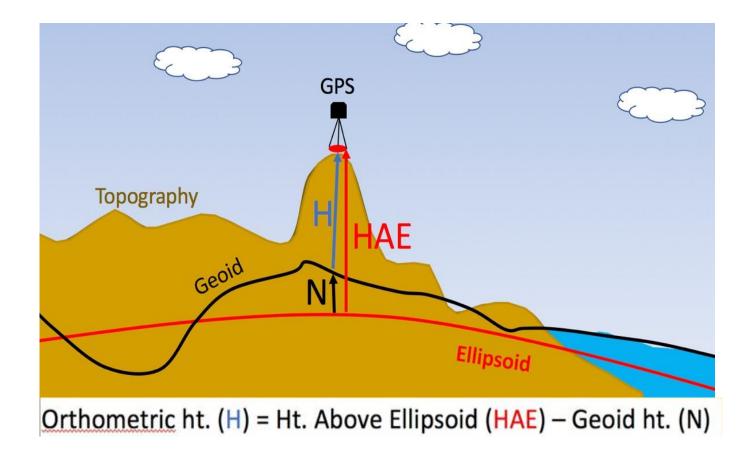
- Motion
- Electric fields
- Magnetic fields
- Gravity
- Optical frequency metrology
 - Stability, absolute frequencies and ratios
- Summary and future perspectives

Gravity potential affects clock frequency


- General relativity: time in different gravity potentials will run at different rates
- Frequency shift

g = local acceleration due to gravity Δh = height above reference level c = speed of light

- Fractional change = 10⁻¹⁶ for every 1 m change in height at Earth's surface
- 10⁻¹⁸ clocks sensitive to 1 cm height changes


Fact: Your head ages faster than your feet by a couple of ns per year!

Potential above reference height

- Geoid equipotential reference surface, local fluctuations
- GNSS gives height relative to ellipsoid
- Local modelling for difference between ellipsoid and geoid

Measuring gravity potentials at NMIs

- Surveys in 2013 2014 at INRIM, NPL, PTB, SYRTE
- 1 3 absolute gravity measurements at each site
- 35 99 relative gravity measurements in surrounding area
- Accuracy of potential above geoid is about 0.25 m²/s² (equivalent to 2.5 cm)

Summary of fundamental frequency shifts

Doppler shifts - due to motion of ion in trap Stark shifts – due to external electric fields (optical, thermal, rf trap) Electric quadrupole shift – due to electric field gradients - due to external magnetic fields Zeeman shifts Gravitational redshift – due to location of ion

Uncertainty budget

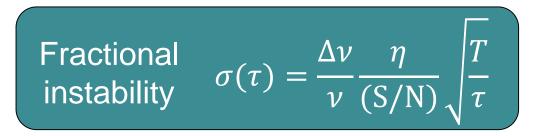
PTB Yb⁺ E3 – single-ion clock with best accuracy

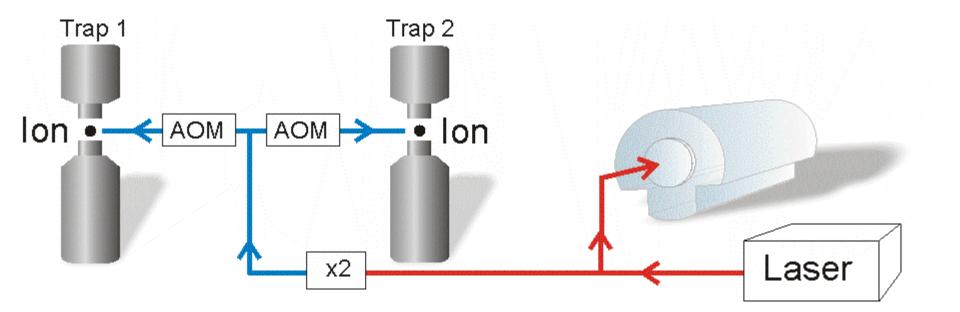
Effect	$\delta \nu / \nu_0 \ (10^{-18})$	$u/\nu_0 \ (10^{-18})$
Second-order Doppler shift	-3.7	2.1
Blackbody radiation shift	-70.5	1.8
Probe light related shift	0	1.1
Second-order Zeeman shift	-40.4	0.6
Quadratic dc Stark shift	-1.2	0.6
Background gas collisions	0	0.5
Servo error	0	0.5
Quadrupole shift	0	0.3
Total	-115.8	3.2

[N. Huntemann et al., PRL 116, 063001 (2016)]

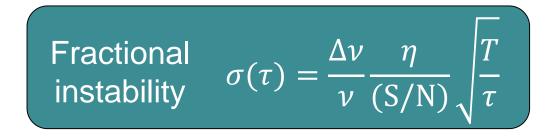
	Ca+	Sr+	Yb+ E2	Yb+ E3	Hg+	Al+	In+
Linewidth, Δv	×	×	×	\checkmark	×	\checkmark	×
Stark shift, $\Delta \alpha_{SC}$	×	×	×	(√)	\checkmark	\checkmark	\checkmark
Quadrupole shift	×	×	×	\checkmark	×	\checkmark	\checkmark
2 nd order Zeeman	\checkmark	\checkmark	×	×	×	\checkmark	\checkmark
Simple lasers	\checkmark	\checkmark	\checkmark	\checkmark	(√)	×	×

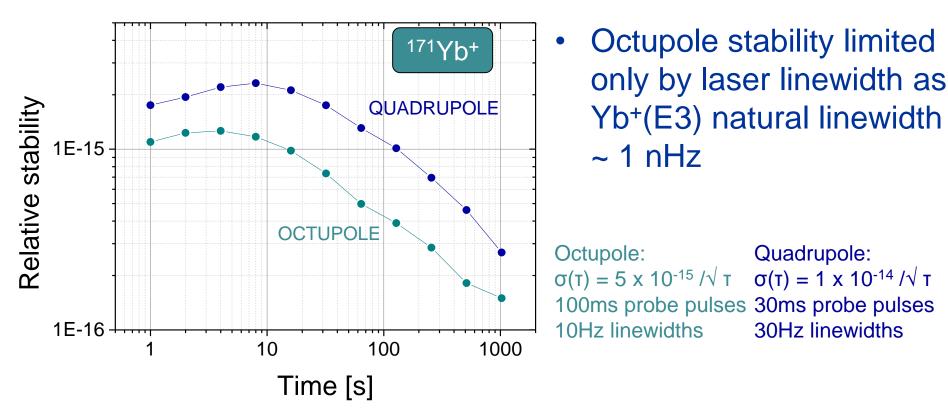
- Compact / simple systems Ca⁺, Sr⁺
- Low systematic frequency shifts In+, AI+
- High stability Yb⁺(E3), Al⁺


Outline

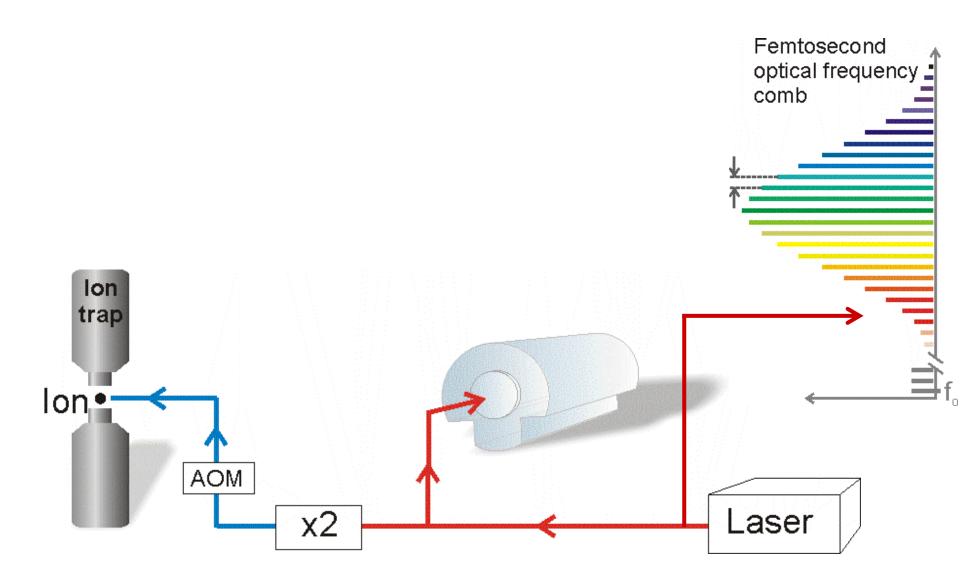

- Atomic clocks based on caesium
- The role of optical clocks
- Single-ion optical frequency standards
- Minimising systematic frequency shifts
 - Motion
 - Electric fields
 - Magnetic fields
 - Gravity
- Optical frequency metrology
 - Stability, absolute frequencies and ratios
- Summary and future perspectives

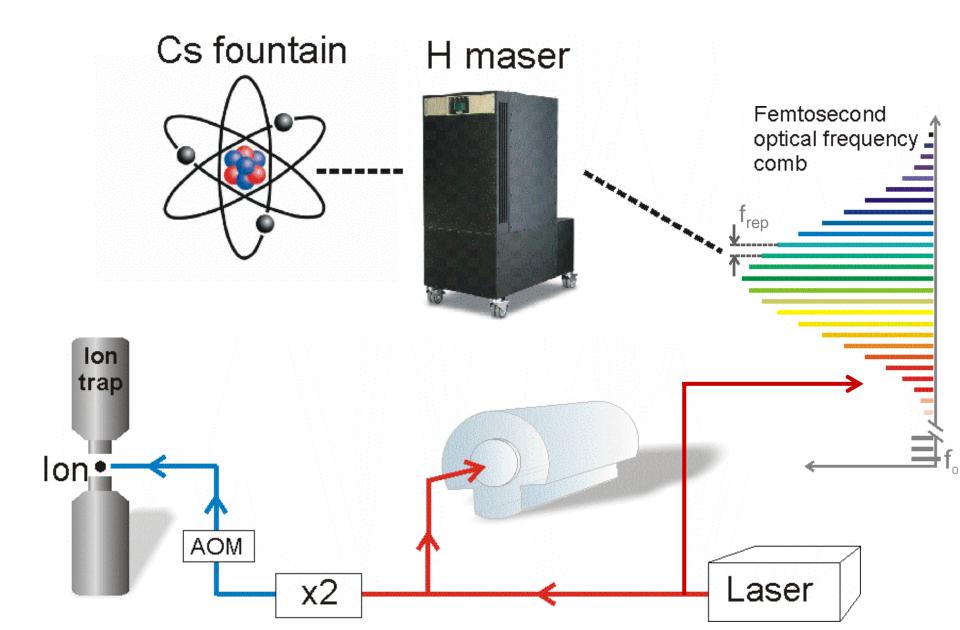
Measuring reproducibility and stability

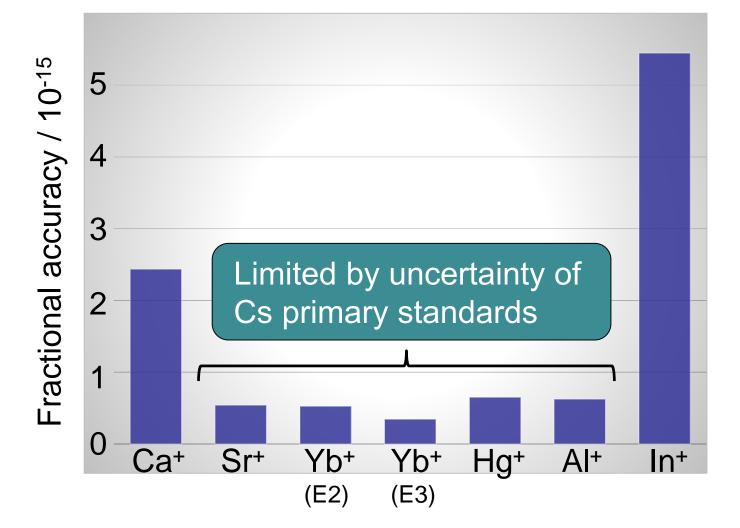



- Compare two independent optical frequency standards
- Measure $(f_1 f_2)$ for a period of time, repeatedly.

Stability depends on linewidths




Measuring the absolute frequency

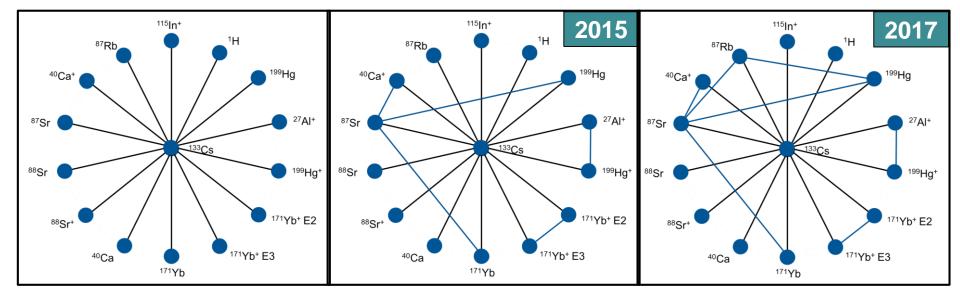


Measuring the absolute frequency

Absolute frequency measurements

[Ca⁺: PRL **102**, 023002 (2009); Sr⁺:PRA **89**, 050501 (2014); Yb⁺(E2): PRA **89**, 023820 (2014); Yb⁺(E3): EFTF2018 proceedings; Hg⁺: Appl. Phys. B, **89**, 167 (2007); Al⁺: Science **319**, 1808 (2008); In⁺: Opt. Exp. **25**, 11725 (2017).]

Secondary representations of the second

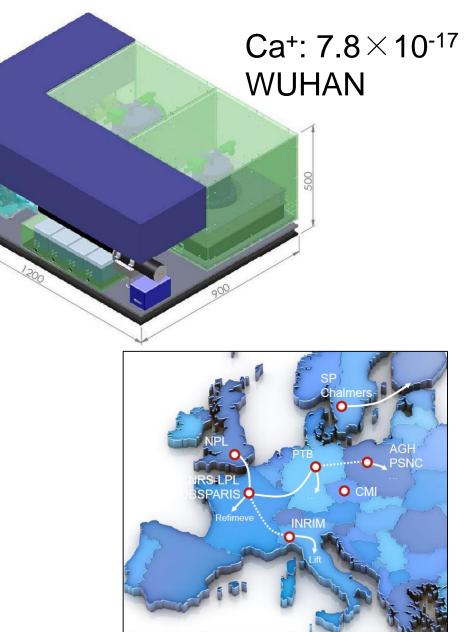


- Optical frequency standards can be used to realise the SI second (although uncertainty cannot be better than Cs primary standard)
- List of secondary representations of the second now includes eight optical frequency standards

Atom or ion	Transition	Wavelength	Recommended fractional uncertainty
¹⁹⁹ Hg	${}^{1}S_{0} - {}^{3}P_{0}$	266 nm	5 x 10 ⁻¹⁶
²⁷ Al+	${}^{1}S_{0} - {}^{3}P_{0}$	267 nm	19 x 10 ⁻¹⁶
¹⁹⁹ Hg+	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	282 nm	19 x 10 ⁻¹⁶
¹⁷¹ Yb+	${}^{2}S_{1/2} - {}^{2}D_{3/2}$	436 nm	6 x 10 ⁻¹⁶
¹⁷¹ Yb+	${}^{2}S_{1/2} - {}^{2}F_{7/2}$	467 nm	6 x 10 ⁻¹⁶
¹⁷¹ Yb	${}^{1}S_{0} - {}^{3}P_{0}$	578 nm	5 x 10 ⁻¹⁶
⁸⁸ Sr+	${}^{2}S_{1/2} - {}^{2}D_{5/2}$	674 nm	15 x 10 ⁻¹⁶
⁸⁷ Sr	${}^{1}S_{0} - {}^{3}P_{0}$	698 nm	4 x 10 ⁻¹⁶

Measuring optical frequency ratios

Optical frequency ratios between labs

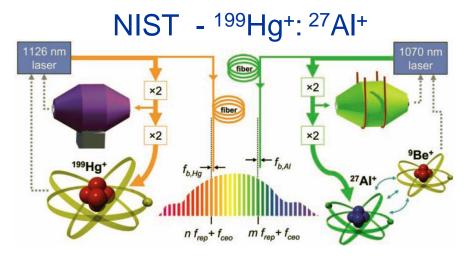

Local comparisons

Transportable clocks

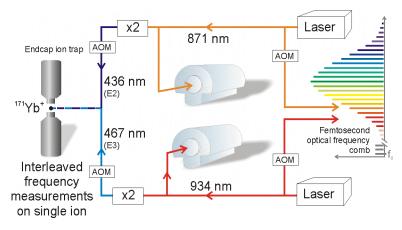
 Satellite links (Two-way and GPS)

Optical fibre links

[J. Cao et al., Appl. Phys. B 123,112 (2017)]



Ion optical ratios – variation of constants



 Sensitivity to variation of fine structure constant

lon	Relative sensitivity	A
Sr+		0.43
Yb+(E2)		1.00
Yb+(E3)		-5.95
Hg⁺		-2.94
Al+		0.008
In+		0.18

NPL, PTB - ¹⁷¹Yb+(E3):(E2)

[Rosenband et al., Science 319, 1808 (2008);

Godun et al., PRL 113, 210801 (2014); Huntemann et al., PRL 113, 210802 (2014)]

Outline

- Atomic clocks based on caesium
- The role of optical clocks
- Single-ion optical frequency standards
- Minimising systematic frequency shifts
 - Motion
 - Electric fields
 - Magnetic fields
 - Gravity
- Optical frequency metrology
 - Stability, absolute frequencies and ratios
- Summary and future perspectives

Summary of ion optical clocks

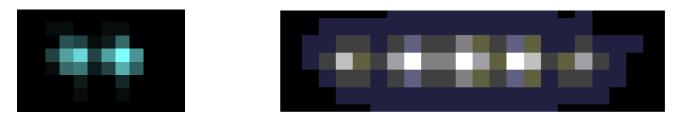
- ✓ Systematic frequency shifts are generally low
- ✓ Laser systems generally simple
- ✓ Traps can be compact
- ✓ Sensitive tools for fundamental physics tests
- Single ions give poor frequency instability

Fractional instability
$$\sigma(\tau) = \frac{\Delta \nu}{\nu} \frac{\eta}{(S/N)} \sqrt{\frac{T}{\tau}}$$

Need to reduce instability:

(a) Increase probe time to reduce $\Delta v \sqrt{T}$ – no limit for Yb⁺(E3) (b) Increase v by choosing an ion with UV transitions (c) Increase S/N by increasing number of ions

lons with UV transitions increase v₀



	Highly charged ions	Thorium	Ekkehard Peik	
Example	Ir ¹⁷⁺ , sympathetically cooled	²²⁹ Th ²⁺ , ²²⁹ Th ³⁺		
UV transition	Electrons more tightly bound	Nuclear ti	ransition	
Low systematics	Transitions shift more towards the UV, hence smaller dc and rf electric polarisabilities		s highly isolated ronment due to cloud	
Highly relativistic	Larger relativistic shifts provide enhanced sensitivity to variation of constants	Sensitivity to variation of constants speculated to be enhanced by as much as 5–6 orders of magnitude		

Multi-ion clocks improve SNR by $1/\sqrt{N}$

 Challenge: to retain homogeneous frequency shifts across whole string of ions

- Linear traps dc electric field gradients along axis, so need ions with low quadrupole moment (eg Al⁺, In⁺, Yb⁺(E3))
- Entanglement schemes give further 1/√N improvement; still many forms of decoherence present a challenging obstacle

		Time to reach $1 imes 10^{-18}$
Single ion	$1 imes$ 10 ⁻¹⁵ / $\sqrt{ extsf{T}}$	$10^6 s = 12 days$
10 uncorrelated ions $(1/\sqrt{N})$	$3 imes$ 10 ⁻¹⁶ / $\sqrt{ extsf{T}}$	10 ⁵ s = 1.2 days

Conclusion

Ions are still very promising candidates for optical clocks

Further reading

Text books

- F. Riehle, "Frequency Standards", Wiley-VCH
- C. J. Foot, "Atomic Physics", Oxford University Press

Publications

- A. D. Ludlow, M. M. Boyd, Jun Ye, E. Peik, P. O. Schmidt, "Optical Atomic Clocks", Rev. Mod. Phys. 87, 637 (2015)
- OC18 specifications document ... coming soon to www.oc18.eu