

21 April 2021 MeterEMI Final Workshop





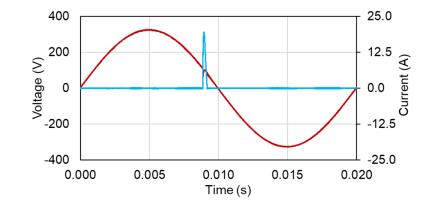
#### **Electromagnetic Interference on Static Electricity Meters**

# Results from testing a sample of European static meter types

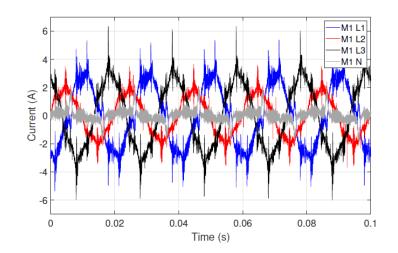
Helko van den Brom Ronald van Leeuwen Zander Marais Gertjan Kok Marijn van Veghel



Dutch Metrology Institute VSL, Delft, the Netherlands




Dutch


Metrology

# **Results with real-world and artificial waveforms**

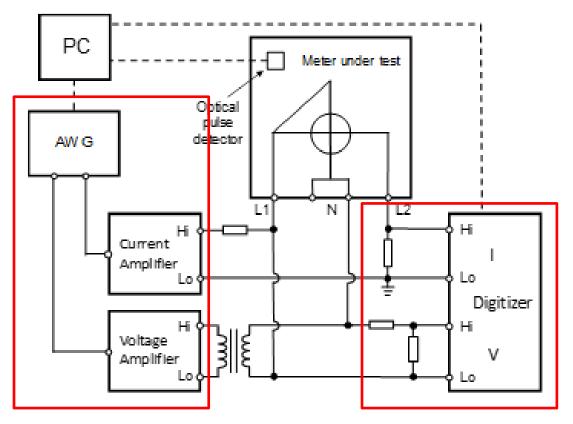
- Survey on 16 representative EU electricity meters from UK, NO, ES, CZ, CH, NL
  - 1. Household appliances (laboratory)
  - 2. Domestic areas (on-site)
  - 3. Artificial waveforms based on real signals











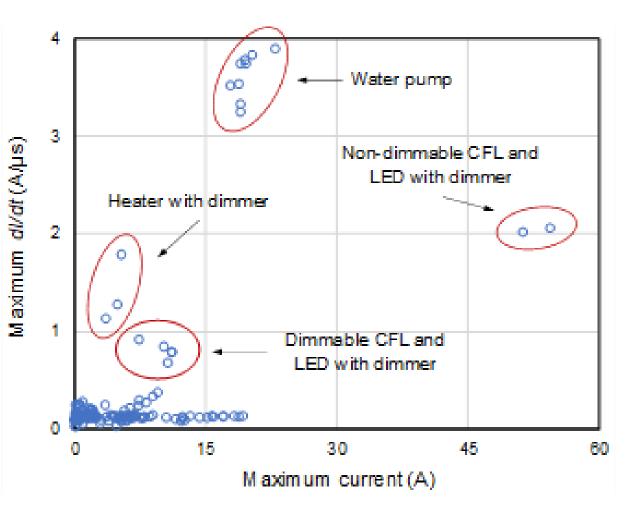

Dutch Metrology Institute

## Schematic overview of VSL testbed

- VSL meter testbed
  - 2-channel AWG provides signal to amplifiers
  - Voltage amplifier isolated from DUT
  - Transconductance amplifier with Lo to ground
  - Calibrated 0.05  $\Omega$  high-precision broadband shunt
  - Calibrated 150:1 voltage divider
  - Calibrated isolated 16-bit, 1 MSa/s digitizers
  - Optical sensor  $E_p$  read out by PC
- Energy *E*(*T*) and reading error ε:

$$E(T) = \int_0^T V(t) \cdot I(t) dt \implies \epsilon = \frac{E(T) - E_p}{E(T)}$$




H.E. van den Brom, Z. Marais, D. Hoogenboom, R. van Leeuwen, and G. Rietveld, "A Testbed for Static Electricity Meter Testing with Conducted EMI", *EMC Europe*, Barcelona, Spain, 2019

• Total uncertainty (k=2) of 0.02 % for sinewaves, 0.5 % for all signals



# **Categorizing Household Appliance Waveforms**

- 2015-2018: LED and CFL lamps and heater with dimmers
- 2018-2019: laptop, PC + monitor, smart-TV, refrigerator + freezer, microwave, USB chargers, DVD players, induction cookers, blenders, vacuum cleaners, drilling machines, vacuum heaters, coffee machines, water pump (PV inverters, washing machines, ...)
- Most important parameters:
  I<sub>max</sub> and *dI/dt*



R. van Leeuwen, H.E. van den Brom, D. Hoogenboom, G.J.P. Kok and G. Rietveld, "Current waveforms of household appliances for advanced meter testing," *AMPS workshop*, Aachen, Germany, 2019





### **Test Results Household Appliance Waveforms**

|        |        | A1    | A2    | A3    | A4    | A5    | A6    | A7     | A8    | A9    | A10   | A11   | A12    | A13     | A14    | A15   | A16   |
|--------|--------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|--------|---------|--------|-------|-------|
|        | Sensor | S     | СТ    | U     | U     | Н     | СТ    | R      | СТ    | S     | U     | СТ    | U      | Н       | R      | R     | S     |
|        | Year   | 2019  | 2017  | 2009  | 2018  | 2008  | 2017  | 2008   | 2017  | 2017  | 2017  | 2017  | 2010   | 2015    | 2013   | 2019  | 2017  |
| Signal | P [W]  | ε [%]  | ε [%] | ε [%] | ε [%] | ε [%] | ε [%]  | ε [%]   | ε [%]  | ε [%] | ε [%] |
| RO     | 793    | 0     | 0.1   | 0.0   | -2.8  | -0.2  | 0.0   | 0.1    | 0.0   | 0.00  | 0.0   | -0.12 | -0.1   | -0.082  | 0.1    | -0.34 | 0.0   |
| R50    | 430    | 0.1   | 0.1   | 0.9   | -2.9  | -0.3  | 0.0   | -4.6   | 0.1   | 0.02  | -0.1  | -0.09 | -1.3   | 0.256   | -0.9   | -1.30 | 0.0   |
| R75    | 242    | 0.2   | 0.3   | -0.6  | -3.1  | -0.6  | 0.0   | 191.4  | 0.2   | 1.42  | -0.1  | -0.09 | 26.8   | -1.186  | 106.6  | -2.66 | 0.3   |
| CL50   | 329    | 1.3   | 1.0   | -27.0 | -1.4  | -0.2  | 0.3   | -70.9  | 1.3   | 1.88  | 6.0   | 0.48  | -6.4   | -16.788 | -76.7  | 3.13  | -37.5 |
| CL75   | 293    | 0.2   | -0.3  | -0.3  | -2.8  | -1.7  | -0.4  | -1.7   | -0.4  | -0.05 | -0.2  | -0.19 | -0.6   | 0.388   | -0.7   | -0.46 | 0.1   |
| RCL0   | 1367   | 0.2   | -0.3  | -0.3  | -2.8  | -1.7  | -0.4  | -1.7   | -0.4  | -0.05 | -0.2  | -0.19 | -0.6   | 0.388   | -0.7   | -0.46 | 0.1   |
| WP1    | 19     | 1.9   | 3.9   | -38.1 | -2.0  | -7.2  | 2.2   | 2711.8 | 4.5   | 1.64  | 5.8   | 0.11  | 1119.0 | 4.245   | 2648.6 | -3.13 | -1.9  |
| WP4    | 34     | 1.0   | 2.2   | -52.1 | -2.3  | -3.5  | 1.3   | 1368.7 | 2.6   | 0.93  | 3.3   | 0.02  | 543.4  | 3.062   | 1258.2 | -1.60 | 1.1   |
| WP9    | 68     | 0.4   | 0.6   | -56.2 | -2.5  | -1.7  | 0.2   | 200.2  | 0.6   | 0.37  | 1.1   | -0.08 | 31.2   | 1.851   | 136.3  | -0.53 | 2.3   |
| WP10   | 67     | 0.2   | -0.3  | -0.3  | -2.8  | -1.7  | -0.4  | -1.7   | -0.4  | -0.05 | -0.2  | -0.19 | -0.6   | 0.388   | -0.7   | -0.46 | 0.1   |

- Test waveforms from dimmed household appliances (heater, LED/CFL, water pump)
- 16 meters, 6 countries, 10 manufacturers, different years of appearance
- S = shunt, R = Rogowski, CT = CT, H = Hall, U = Undisclosed
- blue = negative error, red = positive error, green = OK

 $\rightarrow$  Meter errors are found for isolated household appliances





#### **Test Results On-site Waveforms**

|        | Meter  | A2   | A7    | A13   | A14   |
|--------|--------|------|-------|-------|-------|
|        | Sensor | СТ   | R     | Н     | R     |
|        | Year   | 2017 | 2008  | 2015  | 2013  |
| Signal | P [W]  | ε[%] | ε [%] | ε [%] | ε [%] |
| JV2.1  | 286    | 0    | 10    | 0     | 0     |
| JV2.2  | 422    | 0    | 4     | 0     | 0     |
| JV2.3  | 591    | 0    | 0     | 0     | 0     |
| JV2.4  | 291    | 0    | 0     | 0     | 0     |
| JV2.5  | 2313   | 0    | 0     | 0     | 0     |
| UPC1.1 | 3494   | 0    | -23   | 0     | 1     |
| UPC1.1 | 3500   | 0    | -31   | 0     | -4    |
| UPC2.1 | 620    | 0    | 17    | 0     | 17    |
| UPC2.1 | 2032   | 0    | -1    | 0     | -1    |
| UPC2.3 | 554    | 0    | -9    | 0     | 3     |
| UPC2.4 | 119    | 0    | -17   | 0     | -1    |
| UT1.1  | 752    | 0    | 10    | 0     | 9     |
| UT1.2  | 190    | 0    | 55    | 0     | 43    |

- Test waveforms recorded on-site at metered supply points (JV, UPC, UT)
- Test waveforms selected using UT tool
- 4 selected meters, 3 countries, 4 manufacturers, different years of appearance
- S = shunt, R = Rogowski, CT = CT, H = Hall, U = Undisclosed
- blue = negative error, red = positive error, green = OK

 $\rightarrow$  Meter errors are found for waveforms recorded on-site



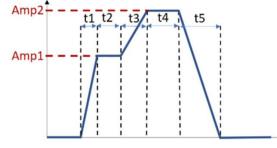


Dutcl

#### **Test Results On-site Waveforms (2)**

|        |        | A1    | A2    | A3    | A4    | A5    | A6    | A7    | A8    | A9    | A10   | A11   | A12   | A13    | A14   | A15   | A16   |
|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|
|        | Sensor | S     | СТ    | U     | U     | Н     | СТ    | R     | СТ    | S     | U     | СТ    | U     | Н      | R     | R     | S     |
|        | Year   | 2019  | 2017  | 2009  | 2018  | 2008  | 2017  | 2008  | 2017  | 2017  | 2017  | 2017  | 2010  | 2015   | 2013  | 2019  | 2017  |
| Signal | P [W]  | ε [%]  | ε [%] | ε [%] | ε [%] |
| UPC2.1 | 1848   | 0.1   | 0.1   | 0.0   | -2.8  | -0.1  | 0.0   | 0.2   | 0.1   | 0.01  | 0.0   | -0.11 | -0.1  | 0.012  | 0.2   | -0.39 | -0.1  |
| UPC2.2 | -131   | 0.0   | -0.1  | 0.2   | 2.9   | TO    | 0.0   | то    | 0.0   | -0.02 | 0.0   | 0.09  | -0.4  | -0.544 | 3.1   | 0.88  | 0.0   |
| UPC2.3 | 694    | 0.1   | 0.0   | 0.0   | -2.8  | -0.2  | 0.0   | 0.1   | 0.0   | 0.01  | 0.0   | -0.11 | -0.6  | 0.321  | 0.1   | -0.04 | 0.0   |
| UT1.1  | 719    | 0.1   | 0.1   | 0.3   | -2.8  | -0.2  | 0.0   | 8.9   | 0.0   | 0.00  | 0.0   | -0.11 | 0.0   | -0.055 | 10.1  | -0.32 | -0.1  |
| UT1.2  | 237    | 0.2   | 0.8   | -0.3  | -2.9  | -0.6  | 0.9   | -2.1  | 1.0   | -0.02 | -0.1  | -0.12 | 0.0   | 0.448  | -0.9  | -0.93 | -0.2  |
| UT1.2a | 180    | 0     | -3.0  | -0.4  | -2.6  | -0.6  | -3.6  | -58.2 | -3.9  | 0.03  | 0.0   | -0.15 | 5.2   | 1.921  | -59.0 | 1.09  | -3.9  |
| UT1.2b | 179    | 0     | 3.0   | -0.3  | -3.0  | -0.8  | 3.7   | 25.5  | 3.6   | -0.07 | -0.3  | -0.13 | -0.9  | -0.341 | 28.6  | -2.10 | -6.7  |
| VSL1   | 2233   | 0.1   | 1.3   | 0.8   | -2.9  | -0.1  | 1.1   | 0.7   | 1.3   | 0.04  | 0.1   | -0.08 | 2.2   | 0.132  | 0.3   | -0.76 | 0.0   |
| VSL2   | 31     | 0.3   | -0.5  | -1.5  | -2.4  | -3.4  | -0.3  | 640.2 | -0.5  | -0.18 | -0.4  | -0.33 | 5.0   | -0.092 | 333.7 | 1.66  | -4.5  |
| VSL3   | 69     | 0.3   | 0.1   | 0.3   | -2.6  | -1.6  | 0.0   | -5.1  | 0.1   | 0.02  | 0.0   | -0.14 | 0.1   | 1.268  | -0.9  | 0.89  | -0.1  |
| VSL4   | 32     | 0.1   | -0.1  | ТО    | -2.8  | -3.4  | -0.2  | 818.0 | -0.2  | -0.51 | -0.5  | -0.41 | -30.3 | 2.831  | 796.5 | 0.18  | -0.7  |
| VSL5   | 1392   | 0.1   | 0.2   | 0.4   | -2.8  | -0.1  | 0.0   | 31.4  | 0.1   | 0.04  | 0.1   | -0.09 | 1.7   | 0.067  | 28.7  | -0.43 | -0.1  |

- 16 meters, 6 countries, 10 manufacturers, different years of appearance
- Test waveforms recorded on-site at metered supply points
- S = shunt, R = Rogowski, CT = CT, H = Hall, U = Undisclosed
- blue = negative error, red = positive error, green = OK, TO = timed out (no pulse)


 $\rightarrow$  Meter errors are found for further waveforms recorded on-site



### **Test Results Simplified Waveforms**

|        | Meter  | A2    | A7    | A13   | A14   |
|--------|--------|-------|-------|-------|-------|
|        | Sensor | СТ    | R     | Н     | R     |
|        | Year   | 2017  | 2008  | 2015  | 2013  |
| Signal | P [W]  | ε [%] | ε [%] | ε [%] | ε [%] |
| WP1    | 28     | 8     | 968   | 1     | 334   |
| WP1M   | 27     | 8     | 974   | 1     | 342   |
| WP1T   | 19     | 6     | 1377  | 3     | 525   |
| WP1TB  | 39     | 0     | 1362  | -16   | 572   |
| WP4    | 60     | 5     | 397   | 0     | 141   |
| WP4M   | 59     | 5     | 399   | 1     | 153   |
| WP4T   | 46     | 5     | 394   | 1     | 98    |
| WP4TB  | 91     | 0     | 393   | -6    | 118   |
| WP9    | 117    | 1     | 29    | 0     | 3     |
| WP9M   | 114    | 1     | 30    | 0     | 3     |
| WP9T   | 101    | 1     | 50    | 1     | 16    |
| WP9TB  | 202    | 0     | 51    | 0     | 14    |
| WP1*   | 29     | 6     | 2527  | 1     | 1961  |
| WP1*M  | 28     | 6     | 2565  | 2     | 1998  |
| WP1*T  | 23     | 5     | 3234  | 3     | 2520  |
| WP1*TB | 46     | 0     | 3214  | 54    | 2552  |

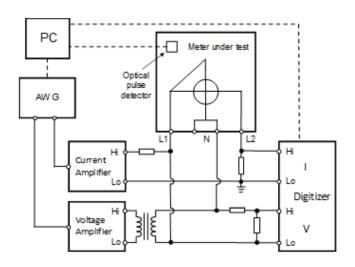
- 4 selected meters, 3 countries, 4 manufacturers, different years of appearance
- S = shunt, R = Rogowski, CT = CT, H = Hall, U = Undisclosed
- WPx = waterpump level x
  WPxM = modelled
  WPxT = trapezoidal

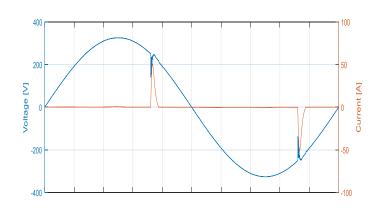


- WPxTB = trapezoidal bipolar
- \* = mains signal (instead of sinusoidal)

→ Simplified waveforms cause similar meter errors as the equivalent real-world waveforms




Dutch Metroloay


### **Summary and conclusion**



**Conducted EMI** caused by electronic equipment can have significant impact on reading errors of static electricity meters

- Testbed used for **testing EU meters** 
  - $\rightarrow$  Suitable as a new standardized test method
- Potentially harmful waveforms recorded:
  - Caused by isolated household equipment
  - Measured on-site at metered supply points
    - $\rightarrow$  Meter errors are found for both types of waveforms
- Simplified waveforms specified with few coefficients
  - → Cause similar meter errors
  - $\rightarrow$  Can be used as input to written standards



