

Dutch Metrology Institute

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

MeterEmi

A Testbed for Static Electricity Meter Testing

Ronald van Leeuwen Zander Marais Dennis Hoogenboom Helko van den Brom Marijn van Veghel

Gert Rietveld

VSL – Dutch Metrology Institute

Possible Future Test Beds for Meter Approval

New phantom power rig: direct generation of arbitrary current waveforms (VSL and NPL)

IEC 61000-4-19 mixed signal approach, distortion added separately (METAS and CMI)

Dutch Metrology Institute

Specifications Arbitrary Waveform Testbed

- Designed for accurate and reproducible testing of meters
- Testing without using actual loads
- The testbed was designed with the following requirements in mind:
 - Single phase application
 - Energy Accuracy better than 0.1 %
 - Generation of test signals up to 50 A in peak amplitude and with frequency components up to 150 kHz.
 - Generation of test signals up to 250 V and frequency components up to 150 kHz.

Dutch Metrology Institute

Schematic overview of VSL testbed

- VSL meter testbed
 - 2-channel AWG provides signal to amplifiers
 - Voltage amplifier isolated from DUT
 - Transconductance amplifier with Lo to ground
 - Calibrated 0.05 Ω high-precision broadband shunt
 - Calibrated 150:1 voltage divider
 - Calibrated isolated 16-bit, 1 MSa/s digitizers
 - Optical sensor E_p read out by PC
- Energy *E*(*T*) and reading error ε:

$$E(T) = \int_0^T V(t) \cdot I(t) dt \implies \epsilon = \frac{E(T) - E_p}{E(T)}$$

H.E. van den Brom, Z. Marais, D. Hoogenboom, R. van Leeuwen, and G. Rietveld, "A Testbed for Static Electricity Meter Testing with Conducted EMI", *EMC Europe*, Barcelona, Spain, 2019

• Total uncertainty (k=2) of 0.02 % for sinewaves, 0.5 % for all signals

Current waveforms with TCA

Dutch Metrology Institute

Time (µs)

Validation of testbed using faulty meter

- Selected TCA2 for further testing
- Validation by comparing meter errors from testbed to original setup results
 - Sinusoidal voltage signal
 - R0 signal used as reference signal with negligible error
 - R75, CL75 and several water pump test signals used as reference with significant error

Applied waveform	Power (W)	Actual load error (%)	Testbed error (%)
R0	798	0.4	0.4
R75	148	51	46
CL75	297	136	142
WP4	34	1257	1261
WP4-M	35	1947	2038
WP9	67	145	143

Conclusions and outlook

- Developed new broadband phantom power testbed
 - Selected suitable high-power broadband TCA
 - Calibrated all components, overall uncertainty < 0.05 %
 - Validated using known faulty meter
- On-going and future work:
 - Testing of meters with real-world waveforms
 - Full uncertainty analysis on waveforms and energy content
 - Compare testbed to testbeds developed by other NMIs

$$E(T) = \int_0^T V(t) \cdot I(t) dt .$$

NPL Arbitrary Waveform Testbed

21/04/2021 Peter Davis

Introduction

- Description of NPL arbitrary waveform testbed
- Overview of isolator
- Uncertainty
- An ongoing comparisons results in progress

NPL system

10

Switched Isolator

Further problems

- Frequency Response
- Temperature
- Linearity

Frequency Response

Low pass filter implemented, but stable

Temperature

Equipment Setup

Residual Voltage

Equipment Setup

Uncertainty

Intercomparison

Two meter selected for testing

- Passed between four NMIs
- Results to be finalised

