

Compact representation of type-testing waveforms using wavelets

MeterEMI final workshop, April 2021

Stefano Lodetti, Deborah Ritzmann, Paul Wright National Physical Laboratory (UK)

Objective

- Define test waveforms for static meters
- Employ the real error-inducing waveform

Challenge

- High fidelity
- Suitability for publication as a normative type-approval test signals (few coefficients, simple definition)

Non-parametric approach

- Complementary to time-domain modelling
- Accurate representation of the measured signals
- Flexibility to adapt to different waveform shapes
- Signal parameters are not arbitrarily set (e.g. slope)

Frequency-domain description

Example (Water Pump)

DFT Discrete Fourier Transform

- Conventional tool for power systems signal analysis
- Suitable for periodic features (e.g. harmonics)

DWT

Discrete Wavelet Transform

- Suitable for localized events
- Time resolution

• Stationary

Discrete Wavelet Transform

- Basis functions: wavelets
 - Finite support
 - Impulsive
 - Scaled and shifted
 - Temporal resolution

Current (A)

Strategy used for denoising, data compression, etc.

Max of the residuals (%) metrics for accuracy of reconstruction 5

Method

Sparsity of the representation

Number of coefficients needed for accurate reconstruction

Experimental analysis

Verification: does the sparse DWT-representation preserve error-inducing features?

1 cycle at 1MS/s – 20k samples

- Original
- Reconstruction from:
 - 100 coefficients
 - 50 coefficients
 - 20 coefficients
 - 10 coefficients

Arbitrary waveform-based rig for meter testing (11.20h CET)

Comparison of obtained errors

Experimental analysis

Verification: does the sparse DWT-representation preserve error-inducing features?

Experimental analysis

6 different waveforms

- Max. residuals less than 20% is acceptable
- 10 coefficients is unsatisfactory
- Error inducing features can
 be preserved with
 - ~20 coefficients
 - = 0.1% of all coefficients

National Physical Laboratory

Summary

- DFT is unsuitable to represent impulsive waveforms
- DWT is an effective strategy for a sparse representation of current waveforms that induce errors in smart meters
- Few coefficients (tens) are sufficient to preserve error-inducing features

Outcome

- 'Toolbox' of new test waveforms based on measured signals
 - Simple, practical method for reconstruction from wavelet coefficients

Thank You for Your Attention