

National Measurement Institute

Relative nanoparticle concentration with benchtop methods

Victoria Coleman

Åsa Jämting and Jan Herrmann Nanometrology Section, National Measurement Institute Australia 36 Bradfield Road, West Lindfield, NSW 2070

NMIA: Physical, Chemical, Biological and Legal Measurements

Overview

- A few words of motivation
- Not all y-axis are equal
- Estimating concentration
 - EXDLS
- A more quantitative approach to concentration
 DCS, PTA and RMM vs ICP-MS
- Questions

Where measurements are important

Product Development

Quality Control

Trade

Safety and Informed choice

Where measurements are important

Absolute size distributions - quantification of the y-axis Important for:

- applying the definition of a nanomaterial
- understanding experiments/systems (e.g. dose, activity/response)
- understanding the results delivered by particle characterisation instrumentation

 Påfør rikelig mengde før/innan solning.
 Hele fjeset/ansiktet = 1 teskje/tesked.
 Reduksjon av mengde svekker beskyttelsen betydelig/Mindre mängd försvagar skyddet avsevärt. Gjenta/upprepa påföring ofte, spesielt etter perspirasjon/svettning.
 Unngå/undvik solen midt/mitt på dagen.

[PR-009147]-INGREDIENTS :

Aqua, Octocrylene, C12-15 Alkyl Benzoate, Ethylhexyl Salicylate, Glycerin, Dimethicone, Silica, Butylene Glycol, VP/Eicosene Copolymer, Dicaprylyl Carbonate, Methylene Bis-Benzotriazolyl Tetramethylbutylphenol (nano), Styrene/Acrylates Copolymer, Butyrospermum Parkii Butter, Butyl Methoxydibenzoylmethane, Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine, Diethylamino Hydroxybenzoyl Hexyl Benzoate, Cetyl Alcohol, Glyceryl Stearate, Chrysanthemum Parthenium Flower Extract, Leontopodium Alpinum Extract, Caprylyl Glycol, Trehalose, Propylene Glycol, PEG-75 Stearate, Ceteth-20, Steareth-20, Potassium Cetyl Phosphate, Decyl Glucoside, Linseed Acid, PEG-8 Laurate, Sodium Dodecylbenzenesulfonate, Alcohol, Acrylates Copolymer, Xanthan Gum, Sodium Polyacrylate, Cetearyl Alcohol, Disodium EDTA, Tocopherol, Phenoxyethanol, Potassium Sorbate, Parfum

Nanoscale – a regulatory definition

Australian Government

Department of Health National Industrial Chemicals Notification and Assessment Scheme

NICNAS working definition for 'industrial nanomaterial'

At present, there is no interna			
for regulatory purposes. This	nally pr	oduced, manufactured or engineered to have uniq	ue p
The NICNAS working definitio	that is	a size range typically between 1 nm and 100 nm,	and
"industrial materials intentio composition at the nanoscale,	r three	dimensions at the nanoscale) or is nanostructured	l(ie
that is confined in one, two, o			(
Surface structure at the harlos	cale)		
Notes to the working definitio			

- > intentionally produced, manufactured or engineered materials are distinct from accidentally produced materials
- > 'unique properties' refe nanoscale features whe phenomena (e.g. increa material includes 10% or more number of particles that meet
- aggregates and agglomes, intentionally produced) NICNAS will consider this to be a n
- > where a material includ properties, intentionally produced) NICNAS will consider this to be a nanomaterial.

NMIA Nanometrology capabilities

Dimensional properties ('size')

Light scattering

Separation techniques

Microscopy

Other

Other physical and chemical properties

Surface area & porosity

Chemical identity

Mass/density

Surface charge

Not all sizing instruments are created equal

 $x = 100 \div 20 = 5$

Equal number vs equal intensity: two extremes

Mixtures of gold nanoparticles (nominally 20 nm and 100 nm)

Equal light scattering intensity

Australian nanoparticle intercomparison 2012

NPS3

Equal number

Australian nanoparticle intercomparison 2012

Estimating concentration from extinction and PSD

90 nm PSL

Clement et al, Nanotechnology 28 (2017) DOI 10.1088/1361-6528/aa8d89

Estimating concentration – complex samples

Nano rubies

Clement et al, Nanotechnology 28 (2017) DOI 10.1088/1361-6528/aa8d89

Can we quantify the y-axis directly?

BBI Solutions citrate capped gold nanoparticles – 60 and 100 nm, dilution series of the above with MilliQ water (dilution factors obtained gravimetrically)

Mass concentrations measured by ICP-MS.

Centrifuged supernatant samples also checked to ensure that the Au mass in the sample was in particles.

Sample	Mass concentration*	
	(μg/L)	
BBI-Au 100nm	52100	
BBI-Au 60nm	55100	(A) (A) (A)
BBI-Au 100nm centrifuged	<5	Augustantian and an an and an
BBI-Au 60nm centrifuged	290	
	*Values accurate to within 10%	

Measure the reference with other techniques

DCS

ΡΤΑ

RMM

Light absorption (Intensity) – convert to mass and number

Volume Optical properties

Ensemble Measurement

Number of particles in scattering volume

Scattering volume (Optical properties)

Single particle

Mass and number of particles flowing through a sensor

Flow rate (Density)

Single particle

Measure the reference with other techniques

DCS errors

- Volume injected (systematic bias + variation due to repeatability)
 - ~4 % variation for 2 μ L volume variation.
- Optical properties errors in either gradient refractive index at the detector position or inputted values for the particle refractive index (real and complex/absorption) will lead to inaccuracies in conversion of intensity weighted data to mass weighted data.
 - ~4 % variation for a change up to ~10 % in RI properties
- Particle density needs to be known for conversion to number-weighted distribution
- Repeatability dependant on signal to noise ratio. For good signal to noise
 <4 % (mass), <6% (number). For poor signal to noise... >20%!

RMM errors

Missing counts or 'double counts' (underestimation) – tune concentration! Can be e.g. >30%

Volume flowing through the sensor is not measured directly. Depends on pressure and (inputted) viscosity - difficult to quantify. May be impacted by blockages. Difficult to quantify without reference.

PTA errors

Camera Settings! (LM10)

Blur Size	3x3
Detection Threshold Type	Single
Detection Threshold	20
Min track length	10
Min Expected Size (nm)	50

•	٠		0
		1	٥

Shutter:15 Gain: 250	
Average # of particles/frame	Equivalent particle concentration
2.5	3.0 × 10 ⁷

Shutter: 50 Gain: 250	
Average # of particles/frame	Equivalent particle concentration
3.9	4.6 × 10 ⁷

Shutter: 100 Gain: 250	
Average # of particles/frame	Equivalent particle concentration
7.2	8.6 × 10 ⁷

Bimodal sample - 60:100 (linearity check)

"Bimodal" sample series

- 1) Nominally 1:5 100 nm Au and 1:5 60 nm Au
- 2) 1:5 100 nm Au + 1:10 60 nm Au
- 3) 1:5 100 nm Au + 1:50 60 nm Au
- 4) 1:5 100 nm Au + 1:100 60 nm Au

Bimodal sample - 60:100 (linearity check)

PTA Bimodal 100 + 60 nm

Conclusions

Even with basic instrumentation we can estimate number concentration effectively

DCS and RMM can measure to within better than 50% of the mass and number concentration values predicted by ICP-MS, and for 'ideal' concentrations, RMM can reach values within 10%

Consistent overestimation of concentration by PTA compared to ICP-MS reference values, in excess of 100% - mitigated by better calibration of optical system.

Exciting times for concentration measurement – VAMAS TWA 34 P10

Work to be done on other materials and complex particle size distributions

Complexities in new technology areas

30 nm Au Reference Material

Commercial ZnO powder

ZnO in sunscreen

Primary nanoscale standard

Commercial instrumentation

Multi (component and disciplinary) solution

MG

BB, JH

NMI Nanometrology team past and **present**: Bakir Babic, Heather Catchpoole, Victoria Coleman, Chris Freund, Malcolm Gray, Jan Herrmann, Åsa Jämting, Malcolm Lawn, Maitreyee Roy and John Miles

Department of Industry, Innovation and Science | National Measurement Institute

36 Bradfield Road Lindfield NSW 2070 Australia Telephone +61 2 8467 3700

VC