

IMPRESS 2: Summary of Impact WP Achievements

Marc Coleman

Stakeholder Workshop, 11th January 2021, virtual

WP4 Creating Impact

- As is common to all EMPIR projects IMPRESS 2 has a WP focussed on disseminating results
- Rather than present the results themselves the purpose of this Introduction to WP4 is to make you aware of what has been disseminated and what can be accessed
- Documentary standardisation has been a key dissemination route under the project, a more detailed talk on this topic will follow

Project Website(1)

- The project ends at the end of January 2021. A short time after that all key project outputs will be publically available on the project website
 - http://empir.npl.co.uk/impress/
 - The exception is peer review papers as it takes a number of months for some journals to publish. But, these will be open access

Project Website(2)

 Most of what you are likely to be looking for will be under the "Documents and publications" tab

Example Outputs

- A non-exhaustive list to show the range and types of outputs includes:
 - Annual presentations to CEN/TC 264 'Air Quality'
 - Special session at FLAIR 2018 on the 'Metrology of Combustion'
 - Invited presentations at leading industrial emission conferences
 - Training course for flow engineers on uncertainty quantification, Bayesian statistics, data-assimilation, data-fusion
 <u>https://aerodynamics.lr.tudelft.nl/~rdwight/cfdiv/Misc/20</u> 19-05.IMPRESS_II.UQ_in_flow_metrology.pdf
 - Masters thesis on flow measurement uncertainty in stacks <u>http://resolver.tudelft.nl/uuid:f56ff5c1-8a9c-</u> 4b5c-b404-ab421b7ede59
 - Book chapter on quality assurance in emissions monitoring <u>https://doi.org/10.1142/9789813274303_0034</u>
 - Presentation Lot20: preparatory group for Eco-Design Directive
 - Guidance document on uncertainty of dTDLAS measurements

Peer Review Publications

So far

- Optical detection of ammonia inside a stack: Comparison of different techniques. Measurement <u>https://doi.org/10.1016/j.measurement.2020.107746</u>
- Flow rate measurement in stacks with cyclonic flow Error estimations using CFD modelling. *Measurement <u>https://doi.org/10.1016/j.measurement.2018.06.032</u>*
- Narrow stack emissions: Errors in flow rate measurement due to disturbances and swirl. JA&WMA <u>https://doi.org/10.1080/10962247.2020.1832621</u>
- The thermal boundary layer effects on line-of-sight TDLAS gas concentration measurements. Applied Spectroscopy <u>http://journals.sagepub.com/doi/10.1177/0003702817752112</u>
- Set-Up of a New Sampling Method to Measure Condensable PM from Residential Solid Biomass Heating Generators. EU BCE
- New standard for particle measurements in small scale biomass combustion. EU BCE
- Non-exhaustive list of some still to come...
 - Discussion of the metrology basis of regulation affecting industrial emissions
 - Discussion of measurement issues in enforcing increasingly stringent emission limits
 - EN 1911 chloride quantification comparison (presented this morning)
 - ILC of analysis of PAH stack samples
 - Monte Carlo uncertainty analysis of stack manual flow monitors