

CALCULATION OF UNCERTAINTIES IN STACK MONITORING

Chris Dimopoulos Senior Research Scientist National Physical Laboratory

Acknowledgements

- This lecture is based largely on the previous lecture prepared by Dr Andrew Clarke
- It has been updated by Rod Robinson and includes an example based on the CEN/TS 17021 Stationary source emissions - Determination of the mass concentration of sulphur dioxide by instrumental techniques

Literature - Standards

Overarching :

- ISO/IEC 98-3:2008 / ENV 13005:1999 Guide to the expression of uncertainty in measurement (GUM) https://www.bipm.org/en/publications/guides/gum.html
- BS EN ISO 14956:2002 Air quality Evaluation of the suitability of a measurement procedure by comparison with a required measurement
- BS EN ISO 20988: 2007 Air quality Guidelines for estimating measurement uncertainty (Esp. Annex E dealing with AMS)

Standards for individual SRMs

General guidance

 EURACHEM / CITAC Guide CG 4 : Quantifying Uncertainty in Analytical Measurement

https://www.eurachem.org/images/stories/Guides/pdf/QUAM2 012_P1.pdf

- NPL offer some free guides on uncertainties <u>https://www.npl.co.uk/resources/gpgs/all-gpgs</u>
- NPL run some e-learning courses: <u>https://training.npl.co.uk/</u>

Literature - STA

- "Guidance on assessing measurement uncertainty in stack emissions monitoring"
 2nd Edn 2004 by Jonathan Pullen and Rod Robinson
 Source Testing Association QGN001-r1
- Particles by 13284-1 (QGN001-01) but see new standard BS EN 13284-1 2017
- Example spreadsheets for most SRMs including flow BS EN ISO 16911-1:2013

Literature – Environment Agency

Technical Guidance Note M2 Monitoring of stack emissions to air V12, 2017

Section 4.10 - pages of general guidance relating to measurement uncertainty

Section 6 - a more detailed treatment of the principles and practice of uncertainty calculation.

Section 7 - Table of *maximum permissible measurement uncertainties* covering species of pollutant beyond those in EU standards.

Used in assessing compliance of measurements with ELVs. Uncertainty subtracted from measured value before comparison with ELV.

https://www.gov.uk/government/publications/m2-monitoring-of-stackemissions-to-air

Overall Uncertainties for Standard Reference Methods

Pollutant	BS EN Standard	Uncertainty Requirement		
H ₂ O Manual	14790:2017*	$\pm 20\%$ of measured value		
SO ₂ Manual	14791:2017*	±20% relative at daily ELV		
NO _x Chemiluminescence	14792: 2017*	±10% relative at daily ELV		
O ₂ Paramagnetic	14789:2017*	$\pm 6\%$ of measured value		
CO Infra Red	15058:2017*	$\pm 6\%$ relative at daily ELV		
		$\pm 30\%$ relative at daily ELV (for		
HCl Manual	1911:2010	LCP and WID plant)		
SO ₂ Instrumental	TS 17021:2017	$\pm 15\%$ relative at daily ELV		

* or the lowest limit value specified for the plant by the local authorities

 O_2 6% relative or 0.3% absolute.

Note uncertainty requirement is generally expressed as relative to ELV on a dry basis before correction to the oxygen reference

Uncertainties for SRMs

- Overall uncertainties incorporating all possible significant sources of variation
- **Expanded** uncertainties with 95% confidence limits
- H₂O, O₂ relative to the actual measured concentration whilst the rest are relative to the daily Emission Limit Value (ELV)
- Note must report expanded uncertainty on reported value – but requirement in standard to check requirement is met is before oxygen correction.

General Approach

- 1. Specify what is being measured and the parameters on which it depends model equation
- 2. Identify possible sources of uncertainty for each parameter
- Quantify the <u>component</u> standard uncertainties u i.e.. prepare the **uncertainty budget** Calculate all component uncertainties in same way – either as percentage (relative) uncertainties or in units of reported value (standard)
 - Recommend to use units of reported value.

General Approach

4. Determine the <u>combined</u> standard uncertainty of the measured value u_c

Then determine the <u>expanded</u> uncertainty U_c Concentration = $X \pm U_c$

where $\mathbf{U}_{\mathbf{c}}$ is the **overall uncertainty** at a confidence level of 95%.

Manual Methods - gases or particles

- Specify the "model equation" relating input quantities to the required concentration:-
 - Mass Concentration in flue gas

= (Mass collected) ÷ (Sample gas volume)

Mass of particles = (Weight Filter +Particles) – Filter weight also include washing weight if significant

Mass of Gas = (Solution Concentration) x (Solution Volume)

Sample gas vol = (Meas. Sample gas vol) $(T_{ref} / T_{act}) (P_{act} / P_{ref})$ (at ref. T and P) (at actual T,P)

Manual methods – gases or particles

- Uncertainty of weighing particles
- Uncertainty of chemical analysis of solution
- Uncertainty of measurement of sample gas volume or liquid solution volume
- Uncertainty of meter temperature or pressure
- + Efficiency of sampling bottles in collecting the measurand, leakage and losses in train etc.

- Manual methods –
- Full treatment is included in the newest standards for Particles EN 13284-1, (Annex G)
 H2O EN 14790
 HCI EN 1911
 SO₂ EN 14791
 VOC (Speciated) CEN/TS 13649

Instrumental Gas Analysers

 Simple model equation, instrument is calibrated using certified gas

Conc = Instr reading*factor + \sum influences

- Factor = calibration factor
- Influences = whatever may affect reading which is not included in calibration e.g. temp, drift, interfering gases
- Sensitivities of output to factors which may influence it determined experimentally
- Information from manufacturers and performance characteristics determined during MCERTS testing

2. Identify possible sources of uncertainty for each parameter

Instrumental Gas Analysers

- Lack of fit (linearity)
- Zero drift
- Span drift
- Sensitivity to sample volume flow
- Sensitivity to atmospheric pressure
- Sensitivity to ambient temperature
- Sensitivity to electrical voltage
- Interferences from other gaseous components present in the flue gas
- Repeatability standard deviation in lab at span level*
- Calibration gas
- (*Repeatability standard deviation at zero is not included)

NPL O

3. Quantify the component standard uncertainties

- Standard uncertainties u those which are obtained from experimental data and thus lead directly to a standard deviation. ("Type A" uncertainties)
- Assuming normal distribution of points around the mean then, with 95% confidence, the uncertainty is ± 2 times the standard deviation.
- The exact factor is 1.96 which is sometimes called the coverage factor k.
- When quoting the values, we must be very clear whether we are giving the standard uncertainty (u=1 SD) or the expanded uncertainty U (where U=k.u) for a particular degree of confidence such as 95% when k=2.

Probability Distributions A

3. Quantify the component standard **NPL** We uncertainties

Uncertainties from influence quantities

where a parameter of influence has a range of values compared to the value at instrument calibration e.g. Ambient temp at cal = 298. Ambient temp during measurement =290 to 303.

Other examples

- uncertainty of a physical dimension (e.g. nozzle size)
- uncertainty of voltage during the experimental work

converted to a **standard uncertainty** assuming all values within the range are equally likely (rectangular distribution)

Probability Distributions

Conversion Factors for Type B Uncertainties (see M2)

 If x_{adj} is halfway between x_{min} and x_{max} then defining

$$\Delta \mathbf{x} = (\mathbf{x}_{adj} - \mathbf{x}_{min}) = (\mathbf{x}_{max} - \mathbf{x}_{adj})$$

- The standard uncertainty is $u_x = \Delta x / (\sqrt{3})$
- If the value of x_{adj} is offset from the centre of the range then

 $u_x^2 = [(x_{max} - x_{adj})^2 + (x_{min} - x_{adj})(x_{max} - x_{adj}) + (x_{max} - x_{adj})^2] / 3$

Estimating Component Standard Uncertainties

Example

- a) Atmospheric pressure variation:
- Measured value 75 mg/m3
- Sensitivity of concentration to atmospheric pressure 0.8% per kPa
- Variation during measurement 99-100 kPa

 $\Delta x = 0.5$

 Standard Uncertainty in concentration units =(0.8/100) x 75 x 0.5 / √3 =0.17mg/m3

Estimating Component Standard Uncertainties

Example b) Calibration Gas

An error in the cal gas affects the reported measured concentration directly and proportionately

- Cal gas conc 75mg/m³
- Specified uncertainty 2%
- Type B uncertainty true concentration 73.5 76.5mg/m³
- Standard uncertainty (2/100) x 75/ $\sqrt{3} = 0.87 \text{mg/m}^3$

Rules for Combining Uncertainties

- The mathematical approach is to combine as partial differentials – but there are simple rules for usual cases:
- X obtained by *addition* or *subtraction* absolute values of component uncertainties combined

$$X = (a \pm u_a) + (b \pm u_b) + (c \pm u_c)$$
$$u_X = \sqrt{u_a^2 + u_b^2 + u_c^2}$$

Rules for Combining Uncertainties

- X obtained by *multipliplication* or *division* -
- relative or percentage values of component uncertainties combined

$$X = \frac{(a \pm u_a)(b \pm u_b)}{(c \pm u_c)}$$

Rules for Combining Uncertainties

- Powers and roots multiply component uncertainty by value of power (2, 3, 0.5, 0.333, etc)
- Eg $u(x^2) = 2 u(x)$

Neglecting Minor Component Uncertainties.

- When one component uncertainty is much smaller than the others then the smaller one can effectively be neglected
- A factor of four is generally sufficient
- European standards state: ignore a component uncertainty <5% of the largest

The Expanded Uncertainty U_c

- Combining all the component standard uncertainties we obtain the *combined uncertainty* u_c
- Multiply by the coverage factor k to obtain the *expanded* uncertainty U_c
 U_c = k u_c
 with k = 2 for 95% confidence.

The Expanded Uncertainty U_c

- U_c may be calculated in concentration units and then expressed as a percentage by dividing by the ELV OR the whole calculation may be done in percentages of the ELV.
- Examples in standards are done assuming measured value is at ELV. This is a special case to show performance of the method – most of the time you will calculate the uncertainty at the measured value – and then check this against requirement as a percentage of the ELV

Example: Instrumental SO₂

- Example based on Annex A of CEN TS 17021:2017
- (A similar example is give in Annex B of the CO standard BS EN 15058:2017)
- This calculation is based on an ELV of 50 mg.m⁻³

SO₂ site specific conditions

Table 1

Specific conditions	Value/range
Range of analyser	0-26 ppm (0-75 mg/m ₀ 3)
Studied concentration of \mbox{SO}_2 : limit value of \mbox{SO}_2 for the site	50 mg/m ₀ 3
	corresponding to 17 ppm at O2,ref
Conditions on the field	
Sample flow during adjustment	60 l.h ⁻¹
Sample flow variation during monitoring	55 – 65 l.h ⁻¹
Sample pressure during adjustment	100 kPa
Sample pressure variation during monitoring	97.5 – 102.5 kPa
Ambient temperature during adjustment	285 K
Ambient temperature variation during monitoring	283 to 308 K
Voltage during adjustment ^a	110 V
Voltage variation during monitoring	107 – 115.5 V
O2 reference concentration : O2,ref	11 % volume
Calibration gas	26 ppm ± 2 %, k = 2
Reading of calibration gas during checking of sampling system	25.7ppm
SO ₂ in N2, without interferent	

Uncertainty Sources

Number Source of uncertainty Assigned	Number Source of uncertainty Assigned symbol	Number Source of uncertainty Assigned symbol
	Provision of analyzer	urood
1	Precision of analyser	ureau
2	Repeatability standard	ur
	deviation at span point	
3	Lack of fit	ulof
4	Short-term zero drift	ud,z
5	Short-term span drift	ud,s
6	Influence of ambient	uat
	temperature	
7	Influence of electrical voltage	uv
8	Influence of vibration	uvib
9	Influence of sample gas	up
	pressure	
10	Influence of sample gas flow	uf
11	Cross-sensitivity	uint
12	Losses in sample line	uloss
13	Calibration gas	ucal

Symbol	Source of uncertainty	Value	Probability distribution	Divisor d	c _i	$c_i u(x_i)$	onal Ph
u _r	Repeatabilit y standard deviation at span point	0,35 %	normal	1	$\frac{R}{100}$	$c_r \frac{0,35}{d_r}$	
u_{lof}	Lack of fit	0,4 %	rectangular	$\sqrt{3}$	$\frac{R}{100}$	$c_{lof} \frac{0,4}{d_{lof}}$	
$u_{d,z}$	Zero drift	0,01 %	rectangular	$\sqrt{3}$	$\frac{R}{100}$	$c_{d,z} \frac{0,01}{d_{d,z}}$	
u _{d,s}	Span drift	0,5 %	rectangular	$\sqrt{3}$	$\frac{R}{100}$	$c_{d,s} \frac{0,5}{d_{d,s}}$	
u _{at}	Influence of ambient temperature	0,2 % / 10 K	rectangular	$\sqrt{3}$	$\frac{1}{10}\frac{R}{100}$	$c_{at} \frac{(t_{max} - t_{adj})^{2}}{(t_{max} - t_{adj})(t_{max} - t_{adj})} + (t_{min} - t_{adj})^{2}}{d_{at}}$	
u _v	Influence of electrical voltage	0,12 % / 10 V	rectangular	$\sqrt{3}$	$\frac{1}{10}\frac{R}{100}$	$c_{v} \frac{(v_{max} - v_{adj})^{2}}{(v_{max} - v_{adj})^{2}} + (v_{min} - v_{adj})(v_{max} - v_{adj}) + (v_{min} - v_{adj})^{2}}{d_{v}}$	
u_{vib}	Influence of vibration	0,4 %	rectangular	$\sqrt{3}$	$\frac{R}{100}$	$c_{vib} \frac{0.4}{d_{vib}}$	
	Influence of sample gas pressure	1,0 % / 3 kPa	rectangular	$\sqrt{3}$	$\frac{1}{3}\frac{R}{100}$	$c_p \frac{1,0(P_{max} - P_{adj})}{d_p}$	

u_f	Influence of sample gas flow	0,2 % / 10 l.h ⁻¹	rectangular	$\sqrt{3}$	$\frac{1}{10}\frac{R}{100}$	$c_f \frac{0,2(f_{max} - f_{adj})}{d_f}$
u _{int}	Cross- sensitivity	1,4 %	rectangular	$\sqrt{3}$	$\frac{R}{100}$	$c_{int} \frac{1,4}{d_{int}}$
u _{loss}	Losses and leakage in the sampling system	0,3 ppm	rectangular	$\sqrt{3}$	1	$c_{loss} rac{loss_{max} - loss_{min}}{d_{loss}}$
u _{CRM}	Calibration gas	0,5 ppm , k = 2	normal	2	1	$c_{CRM} \frac{0,5}{d_{CRM}}$
u _c	Combined standard uncertainty		normal			$\sqrt{\sum_{i=1}^{N} c_i^2 u_i^2(x_i)}$
U ₉₅	Expanded uncertainty		t-distribution			$k_{95}u_c$

Symbol	Source of uncertainty	Value	Probability distribution	Divisor <i>d</i>	C _i	$c_i u(x_i)$	Ø
u _r	Repeatability standard deviation at span point	0,35 %	normal	1	$\frac{26}{100} = 0,260$	$0,260\frac{0,35}{1} = 0,091$	
u_{lof}	Lack of fit	0,4 %	rectangular	$\sqrt{3}$	$\frac{26}{100} = 0,260$	$0,260\frac{0,4}{\sqrt{3}} = 0,060$	
$u_{d,z}$	Zero drift	0,01 %	rectangular	$\sqrt{3}$	$\frac{26}{100} = 0,260$	$0,260\frac{0,01}{\sqrt{3}} = 0,002$	
$u_{d,s}$	Span drift	0,5 %	rectangular	$\sqrt{3}$	$\frac{26}{100} = 0,260$	$0,260\frac{0,5}{\sqrt{3}} = 0,075$	
u _{at}	Influence of ambient temperature	0,2 % / 10 K	rectangular	$\sqrt{3}$	$\frac{1}{10}\frac{26}{100} = 0,026$	$ \begin{array}{r} (308 - 285)^{2} \\ (308 - 285)(308 - 285) \\ +(283 - 285)(308 - 285) \\ +(283 - 285)^{2} \\ \hline 0,026 \\ \hline \sqrt{3} \\ = 0,066 \end{array} $	
u _v	Influence of electrical voltage	0,12 % / 10 V	rectangular	$\sqrt{3}$	$\frac{1}{10} \frac{26}{100} = 0,026$	$0,026 \frac{\sqrt{(115,5 - 110)^2 + (107 - 110)(115,5 - 110)} + (107 - 110)^2}{\sqrt{3}}$ = 0,009	
u_{vib}	Influence of vibration	0,4 %	rectangular	$\sqrt{3}$	$\frac{26}{100} = 0,260$	$0,260\frac{0,4}{\sqrt{3}} = 0,060$	
u _p	Influence of sample gas pressure	1,0 % / 3 kPa	rectangular	$\sqrt{3}$	$\frac{1}{3}\frac{26}{100} = 0,087$	$0,087 \frac{1,0(102,5-100)}{\sqrt{3}} = 0,125$	

u _f	Influence of sample gas flow	0,2 % / 10 I. h ⁻¹	rectangu Iar	$\sqrt{3}$	$\frac{1}{10} \frac{26}{100} = 0,026$	$0,026\frac{0,2(65-60)}{\sqrt{3}} = 0,015$	al Laboratory
u _{int}	Cross- sensitivity	1,4 %	rectangul ar	$\sqrt{3}$	$\frac{26}{100} = 0,260$	$0,260\frac{1,4}{\sqrt{3}} = 0,210$	
u _{loss}	Losses and leakage in the sampling system	0,3 p pm	rectangul ar	$\sqrt{3}$	1	$1\frac{0,3}{\sqrt{3}} = 0,173$	
u _{CRM}	Calibration gas	0,5 p pm, k = 2	normal	2	1	$1\frac{0,5}{2} = 0,250$	
u _c	Combined standard uncertainty (ppm)		normal			0,419	
U ₉₅	Expanded uncertainty (ppm)		k = 2			0,838	

Calculation of Combined and Expanded Uncertainty

The **combined uncertainty** \mathbf{u}_{c} is obtained as the square root of the sum of the squares of all the component uncertainty u values in the right hand column, converted to mass concentration from which:

 $u_c = 1.20 \text{ mg.m}^{-3}$

The Expanded uncertainty $U_c = 2 \cdot u_c$ $U_{c_{-}} = \pm 2.40 \text{ mg.m}^{-3}$ with level of confidence of 95%.

 $ELV = 50 \text{ mg.m}^{-3}$ so this represents **4.8% of the ELV**

QUESTIONS?

