

fiducial reference temperature measurements

Land Surface Temperature Field Intercomparison Experiment at Gobabeb, Namibia

Frank-M. Göttsche, LST FICE 2017 team, CEOS Land Product Validation sub-group

INSTITUTE OF METEOROLOGY AND CLIMATE RESEARCH (IMK-ASF)

Fiducial Reference Measurements (FRM)

Sentinel-3 Validation Team:

"The suite of independent ground measurements that provide the maximum return on investment for a satellite mission by delivering, to users, the required confidence in data products, in the form of independent validation results and satellite measurement uncertainty estimation, over the entire end-to-end duration of a satellite mission"

FRM must (at least):

- 1. Document evidence of its traceability to SI
- 2. Be independent from the satellite geophysical retrieval process
- 3. Detail an uncertainty budget for the instrumentation and measurement process for the range of conditions it is used over.
- 4. Adhere to community agreed measurement protocols & management practises.

FRM4STS - objective 1

'Establish & maintain SI traceability of global Fiducial Reference Measurements (FRM) for satellite derived surface temperature product validation'

NPL	NPL
	fiducial reference temperature measurements
Fiducial F Satellites	Fiducial Reference Measurements for Validation of Surface Temperature from Satellites (FRM4STS)
Technical Procedur and Refer	Technical Report 3 A Framework to Verify the Field Performance of TIR FRM
ESA Cont	ESA Contract No. 4000113848_15I-LG
Evangelo Nigel Fox Frank Gö Jacob L.	Frank Göttsche, KIT Folke S. Olesen, KIT Jacob L. Høyer, DMI Werenfred Wimmer, Southampton University Tim Nightingale, STFC
Werenfre Figure 4: Cone-shaped vortex in water as a simple calibrator.	APRIL 2017

Best practises: in situ LST 'recipe'

- Radiometers shall be traceably calibrated to ±0.3 K or better
- Approx. homogeneous & isothermal targets (on radiometer scale)
- Observations to be performed at near-nadir view angles
- Keep clear of obstructions (trees, buildings, cars, ...)
- Measure down-welling sky irradiance 'simultaneously'
- Estimate hemispherical sky irradiance under favourable conditions: completely clear sky or complete uniform stratus
- Obtain instrument-specific emissivity under favourable conditions: stable irradiance (at night), clear sky and low wind speeds
- Synchronise all clocks to time UTC (I know don't laugh ...)

Committee on Earth Observation Satellites CEOS Working Group on Calibration and Validation WGCV Land Product Validation Subgroup LPV

Validation of terrestrial satellite-derived products Best practices proposed by the CEOS WGCV Land Product Validation sub-group

Pierre Guillevic, Miguel Román, Fernando Camacho de Coca, Jaime Nickeson, Zhuosen Wang, Frank Göttsche & Christopher Justice

And LPV Focus Area leads

CEOS > WGCV > LPV

CEOS - Committee on Earth Observation Satellites 31 CEOS Members (e.g. space agencies, research centers) 24 Associate Members (e.g. UNEP, WMO, GCOS)

CEOS coordinates civil space-based EO to benefit society

The **Working Group on Calibration and Validation** (WGCV) is one of 5 CEOS working groups

Land Product Validation (LPV) is one of 6 WGCV subgroups

Current LPV Officers:

Chair Vice-Chair Secretariat Protocol Dev. Miguel Román Fernando Camacho Jaime Nickeson Pierre Guillevic Zhuosen Wang NASA GFSC EOLAB/U. of Valencia SSAI/NASA GSFC UMD/NASA GSFC UMD/NASA GSFC

+ 11 Focus Areas with 2 co-leads each

Critical need for ground truth

VIIRS vs. MOD11 algorithms: similar poor performance over arid areas

Spatial scale mismatch in LPV

- Characterize both, in situ measurements and validation datasets at satellite product resolution including uncertainty estimates
- In situ needed to characterize product uncertainties and identify issues with algorithm, temporal drift, ...

LPV challenges

Example: Spatial vs. temporal variability

Before the harvest

After the harvest

Bondville, IL: Temporal variations of the contribution of the surrounding area to coarse radiometric measurements over croplands

To be released soon!

FRM4STS - objective 2

'International harmonisation and interoperability through a set of intercomparisons'

KIT Validation Stations

LST FICE 2017 at Gobabeb

Main objective: Coordinate & demonstrate field inter-comparison activities for TIR FRM.

Participants & instruments

Institution	Instrument(s)
Universidad de la Laguna (GOTA-ULL), Spain	- Radiometer CIMEL CE312-2 (six bands)
Office National d'Etudes et Recherches	- 2 Radiometer <u>Heitronics</u> KT 19.85 II
Aérospatiales (ONERA), France	- Spectroradiometer BOMEM MR354 SC (3-13 µm)
	Black Body MIKRON M345 5x5''
University of Southampton, United Kingdom	- Infrared Sea Surface Temperature
	Autonomous Radiometer (ISAR)
	- Black Body CASOTS 2
University of Valencia, Spain	- Radiometer CIMEL CE-312-2 (six bands)
THEMACS Ingénierie, France	- Custom-built emissometer (radiometer)
	- TIR camera with calibration targets
Karlsruhe Institute of Technology (KIT), Germany	- 2 Radiometer <u>Heitronics</u> KT15.85 IIP
	Mobile radiometric measurement system

Report from the Field Inter-Comparison Experiment (FICE) for Land Surface Temperature

Frank-M. Göttsche¹, Folke Olesen¹, Laurent Poutier², Stéphane Langlois², Werenfrid Wimmer³, Vicente Garcia Santos⁴, César Coll⁴, Raquel Niclos⁴, Manuel Arbelo⁵ and Jean-Pierre Monchau⁶

¹Karlsruhe Institute of Technology, Germany,
²Office National d'Etudes et Recherches Aérospatiales, France,
³National Oceanographic Centre, United Kingdom,
⁴University of Valencia, Spain, ⁵Universidad de la Laguna, Spain,
⁶THEMACS Ingénierie, France

LST FICE 2017 team at Gobabeb, Namibia

Weather conditions during LST FICE 2017

Field calibration & emissivity determination

BT via diffuse reflector

View from Gobabeb wind mast

Skv

R camera calibration THEMACS Ingénierie)

Radiometer calibration

against ONERA blackbody)

Emissivity determination

BOMEM MR354 SC (ONERA)

Emissivity measuring device

(THEMACS Ingénierie)

Emissivity determination

	THEMACS
AR	

	THEMACS (field)		
	Location,	Emissivity	
1.13	wind mast	(8-14 µm)	
	point1	0.914	
A M	point2	0.900	
1000	point3	0.893	
and and	point4	0.917	
	point5	0.877	
and the second s	point6	0.902	
S. Soldan	mean	0.901	
ATTACK ST	stddev	0.015	

Target ONERA (field)	Mean	Stddev	
MAST2_DUST	0.953	0.015	
MAST2_SAMPLE	0.927	omissivi	it.
MAST_TARGET_GLOB	0.918	for KT1	ny a
ROAD	0.933		3
GRTC	0.918	0.015	

1	THEMACS (lab) Emissivity for spectral band				
	Material	2-17µm	8-14µm	8-12µm	9.6-11.5µm
	Sand	0.937	0.925	0.909	0.937
	Gravel	0.873	0.806	0.758	0.894

Intercomparison at Gobabeb 'wind mast'

ducial reference

easurements

LST intercomparison at Gobabeb wind mast

Spatial averaging over gravel plains

Three return trips on 23.6. and 24.6.:

- Length: 20 km, 16 km, and 24 km
- Speed: 10-15 km/h
- Mounting height: 1.8 m
- View angle: 35°
- Footprint $\emptyset \approx 30$ cm

fiducial reference temperature

neasurements

LST intercomparison across gravel plains

Conclusions & outlook

- Successful **temporal** intercomparison (4 days, 5 radiometers)
- Average deviation from reference LST was 0.08 ± 0.47°C
- Ignoring outliers, for two data sets stdev was about 0.2°C
- Gravel plains homogeneous for radiometer footprint > 2m²
- Broad channel (8-14 μm) problematic for long path length (17m)
- For the spatial intercomparison average absolute difference from mean LST was 0.36°C and average standard deviation 0.18°C
- Gobabeb wind mast LST were 0.45°C warmer than mean LST from the spatial intercomparison, while stdev was 0.39°C
- The LST FICE highlighted the importance of **in-situ** emissivity
- The measurement protocol lead to highly comparable in-situ LST
- FICE allow teams to compare their measurement approaches and to understand possible differences between their results

Thank you!

fiducial reference temperature measurements

