







Bojan Bojkov, Francois Montagner NPL FRM4STS International workshop 18/10/17



Anne O'Carroll

### Outline

- Background
- Copernicus EUMETSAT project on improved drifters
- Sentinel-3 validation
- Future outlook



## Cal / Val and evaluation of space-borne data

- Cal/Val is essential to quantify the data quality for both scientific and operational missions through the lifetime of an EO mission
- Relies on existing network surface measurements
- Also needs specialised and direct investments in Cal/Val manpower, infrastructure, and coordination of activities / access
- Calibration and validation activities both essential to fully evaluate satellite products to meet service needs

3



"The suite of independent ground measurements that provide the maximum return on investment for a satellite mission by delivering, to users, the required confidence in data products, in the form of independent validation results and satellite measurement uncertainty estimation, over the entire end-to-end duration of a satellite mission"

#### (Sentinel-3 Validation Team)

- Based on specific requirements
- Linked to a mission's Cal/Val plan activities
- Building on existing capabilities
- Forward thinking and long-term vision
- Not necessary mission specific



## Why FRM are needed

- FRM are needed to understand how accurate the data products really are
- To deliver the required confidence in the data products GEO/CEOS QA4EO
- Balance on the number of FRM required with additional costs to deliver a satellite mission with known product quality that is "fit for purpose"
- International coordination to bring FRM investment into mainstream where beneficial to satellite and ground based measurement users



# **DBCP-GHRSST** pilot project



Original proposal in 2013 requested:

- A number of drifters to be upgraded to a higher specification
  - Position accuracy and reporting to 0.01degrees (HRSST-1)
  - SST accuracy < 0.05K; reporting to 0.01K (HRSST-2)
  - ->Total standard uncertainty in measured SST to be < 0.05K</li>
- Requirements (e.g. Blouch, DBCP-29)
  - Hourly measurements
  - Report design depth in calm water to ±5cm
  - Report of geographical location to ±0.5km or better
  - Report of time of SST measurements to ±5 minutes
- Endorsed by GHRSST 2013; Sentinel-3 Validation team 2013; and discussed at CEOS WGCV



## Why we need improved drifting buoys

- Original GHRSST request for improved drifters was driven by the high quality of SST from AATSR
- Understand uncertainties on SSTs with routine, longterm, consistent analysis
- Increased importance now in Sentinel-3 SLSTR era, long-term



FIG. 6. Locations of moored (gray) and drifting (black) buoy SSTs matched with AATSR SSTs from 19 Aug 2002 to 20 Aug 2003.



# **Towards improved drifting buoys from drifters**

- Measurement protocols should be documented, in long term, with high frequency and be satellite specific
- Improved calibration techniques
- Towards full traceability to SI standards
- Access to metadata and additional measurements.





## **Coordination towards FRM from drifters**

Various activities:

- FRM4STS route to traceability
- GHRSST coordination with the DBCP
- EUMETSAT delegate body recommendations
- EUMETSAT / Copernicus ITT project starting soon
- Discussions with EUMETNET towards incremental possibilities for satellite agencies to fund experimental and incremental capability that is not usually available from 2019/2020 on

-> Increased coordination between in situ and satellite data providers



# Workshop on "in situ data for satellite SST validation"

- Hosted by Ifremer, January 2016.
- Aim to bring together SST in situ data providers and satellite SST producers in Europe to share requests and requirements, particularly in preparation for Copernicus Sentinel-3 SLSTR Sea Surface Temperature validation.
- Requests on NRT requirements, metadata and manufacturer information, position accuracy / reporting, temporal sampling...
- Coriolis identified as source for Copernicus Sentinel-3 SST validation (<u>http://marine.copernicus.eu</u>).
- Quality control is important for flagging but not screening e.g. <u>http://www.meteo.shom.fr/qctools</u>.
- <a href="ftp://ftp.ifremer.fr/ifremer/cersat/workshop/20150127\_in\_situ\_workshop/">ftp://ftp.ifremer.fr/ifremer/cersat/workshop/20150127\_in\_situ\_workshop/</a>

Towards Fiducial Reference Measurements from drifting buoys for Copernicus satellite validation



10

# **Copernicus EUMETSAT project: improved drifters**

**"Towards Fiducial Reference Measurements from drifting buoys for Copernicus satellite validation"** 

 Project on improved drifting buoy Sea Surface Temperature for Copernicus Satellite Validation due to start soon.

Purpose:

"Provide well-calibrated drifting buoy SST, towards SI-traceable standards, HRSST-FRM"

So it is then possible to:

"Assess and establish the benefit of improved incremental capability of drifting buoys for satellite SST validation"



## **Overview of project details for HRSST-2+**

- To equip a significant number (100-150) of drifting buoys with improved calibration capability and provision of measurements over a 2+2 year period.
- Additional digital SST probe to standard SVP-B.
- Near surface water pressure sensor.
- Provide a service via ftp and GTS, possible inclusion of high frequency data
- All relevant technical documentation.
- Careful scheduling with Sentinel-3A / 3B SLSTR SSTs.

12



# **Phase 1 requirements**

Specification of new drifting buoy design, requirements include:

- Two sensors (SVP-B + additional sensors)
- The additional sensor shall provide measurements to an uncertainty of at least ±0.05degree K or better, and reporting to at least 0.01K resolution.
- Measurements of sea-water pressure at the SST sensor depth shall be provided to understand and estimate the depth of the SST sensor.
- Deployment of two improved drifting buoys.
- Specification documentation for review.



## **Phase 2 requirements**

Building and deployment of new drifting buoys, measurement service and data analysis, include:

- Build, procure, deploy 100 HRSST-2 drifting buoys as per agreed specification.
- Provision of measurements through the GTS and ftp.
- Downstream scientific analysis and Quality Control of the drifting buoy measurements.
- Review workshop to assess project outcomes (KO+36m).
- Present at relevant meetings and write up outcomes in journal.
- Continuation and maintenance of a global drifter metadata database as established by FRM4STS, and in coordination with the DBCP.
- Required metadata information included within data files on GTS.



## Option

Further 50 drifting buoys.

 The ability to provide measurements from sampling at 1Hz for a period of 5 minutes every hour and report the raw data (approx. 1kbyte/hr).



## **Regions of preference**



**Possibilities:** 

- Canary Islands
- SE-Asia
- Upwelling areas
- High-latitudes



#### e.g. AATSR Reprocessing for Climate Prior probability of cloud, University of Reading



#### **Outreach and data**

- Assessment through Sentinel-3 SST Cal/Val activities, and with GHRSST.
- Coordination towards traceable standards.
- Data availability through GTS.

-> Need for well calibrated, towards traceable drifting buoys for validation



#### **Copernicus Sentinel-3 SST**

 Improved drifters needed in 2017 for Sentinel-3A validation and in preparation for Sentinel-3B validation in 2018.





opernicus 🥐 EUMETSAT

# **Sentinel-3 Validation team - temperature**

| PI                    | Country   | Institution                 |
|-----------------------|-----------|-----------------------------|
| Minnett Peter         | USA       | RSMAS                       |
| Nightingale Tim       | UK        | STFC                        |
| Tsamalis Christoforos | UK        | Met Office                  |
| Beggs Helen           | Australia | BoM                         |
| Høyer Jacob           | Denmark   | DMI                         |
| Mittaz Jonathan       | UK        | University of Reading / NPL |
| Wimmer Werenfrid      | UK        | University of Southampton   |
| Dybkjær Gorm          | Denmark   | DMI                         |
| Corlett Gary          | UK        | University of Leicester     |
| CMEMS                 | FRANCE    | Mercator-Ocean              |
| Ignatov Alexander     | USA       | NOAA-NESDIS                 |
| Bob Brewin            | UK        | PML                         |
| Aida Alvera-Azcarate  | Belgium   | University of Liege         |
| Emmanuelle Autret     | France    | Ifremer                     |
| Harris Andrew         | USA       | University of Maryland      |

#### Activities range:

- Ship borne radiometers
- Drifting buoys / Argo
- Climate / NWP
- Coastal, fronts, high latitude / MIZ, lakes, new measurement opernicus 🥐 EUMETSAT

<sup>19</sup> technicules ce Carinet at who buoys for Copernicus satellite validation



# **OSI SAF SLSTR SST matchup dataset**



 Routine collocation of in situ and satellite data.

Drifters, Moored
buoys, Argo, Ship
Borne radiometers.

Use of Coriolis.

Coordination with international teams.



20

#### **SLSTR** buoy matchup results



 Measurements from HRSST-2 should start to be available in early 2018

Ready for Sentinel-3B early validation

 Available on the GTS to all for satellite SST validation (Sentinel-3, plus...)



### **Overall summary and aim**

• To assess and establish the benefit of improvements of drifting buoy for satellite SST validation

- Total standard uncertainty in measured SST to be < 0.05 K
- Sentinel-3 SLSTR validation activities
- Wider validation team, GHRSST, related workshops
- Towards HRSST-FRM

23

 Coordination on the route to traceability; operational access to metadata and quality information.





## **Future outlook**

• Discussion and coordination to understand how a higher specification of drifter capability can become the default design used worldwide.

• Future Copernicus / EUMETSAT projects foreseen to continue cooperation and collaboration.

• EUMETSAT delegate body groups endorsing FRM inclusion in science and Cal/Val plans.





#### **Acknowledgements**

#### **FRM4STS**

David Meldrum, Craig Donlon

#### GHRSST

Gary Corlett

#### Ifremer

Jean-Francois Piolle

#### **OSI-SAF**

 Gorm Dybkjaer, Jean-Francois Piolle, Anne Marsouin, Stephane Saux-Picart, Jacob Hoeyer, Steinar Eastwood et al

#### EUMETSAT

• Igor Tomazic, Prasanjit Dash

