Towards traceability when validating satellite IST observations

Jacob Høyer, Rasmus Tonboe, Fred Wimmer, Steinar Eastwood, Peter Thejll, Andreas Lang and Gorm Dybkjær

Outline

- Motivation
- Protocols
- FRM IST intercomparison experiment
 - Satellite validation
- Uncertainty budget
- Conclusions and way forward

National Physical Laboratory

Motivation

- IST ranked 4 out of 22 parameters in SI CCI survey
- Several satellite products are available:
 - Metop
 - Modis
 - Viirs
 - AVHRR-GAC reanalysis
- In situ observations very difficult to use
 - Sparse
 - Representativeness effects often larger than product uncertainty
 - No SI traceability

Protocol for IST radiometer comparisons

ALE

Protocol for IST radiometer comparisons

- Developed for the IST FICE
 - Guidelines for IST radiometer experiment
- General purpose experiment:
 - Can be used for other camaigns

● ☆ **** Dmi	fiducial referent temperature measurements	e
Fiducial Refe Satellites (FI Radiometers	erence Measurements for validation of Surface Temperature fro RM4STS) – Ice Surface Temperature Comparison of Participants 5	n
Technical Re Protocol for	eport 1 the FRM4STS LCE (LCE-IP)	
ESA Contrac	ct No. 4000113848_15I-LG	
Jacob Hoyer		
OCTOBER 2	015	
Reference	OFE- D80-V1-Iss-1-Ver-1-DRAFT	
Issue		
Revision		
Date of Issue	20 October 2046	

Field Inter-Comparison Experiment (FICE) for Ice surface- temperature

Report from Field Inter-Comparison Experiment (FICE) for ice surface temperature

Jacob L. Høyer and Andreas M. Lang, Rasmus Tonboe, Steinar Eastwood and Werenfrid Wimmer

Danish Meteorological Institute

fiducial reference temperature measurements

DMI
 Danish Meteorological Institute

IST FICE introduction

- March 30 April 7, 2016
- 3 research teams and 6 TIR radiometers
 - 2 x ISARs (DMI + NOCS)
 - 1 x KT 15.85II (DMI)
 - 3 x Cambell IR 120 (DMI + 2 Metno)
- All instruments mounted on sea ice for intercomparison
- Additional experiments:
 - Spatial variability
 - Freeze up experiment
 - Angular emissivity experiment

Site

- Inglefield Bredning, off Qaanaaq
- High Arctic environment
- 1 meter of sea ice
- 9 cm of snow
- 4 km from the coast
- DMI field campaigns since 2011

Weather conditions

- Typical conditions for transition season:
 - Cold and calm
- Pronounced daily variation
- Uneven snow distribution

fiducial reference temperature measurements

• Favourable conditions for field work

Instrumentation

Radiometers	Institution	Ice sampling rate	Spectral range (µm)	Measured parameters		
ISAR08	DMI	2-3 minutes 9.8-11.5 I		Radiometric IST/Sky temp		
ISAR03	NOCS	2-3 minutes	9.8-11.5	Radiometric IST/Sky temp		
KT15.85 II	DMI	1 sec	9.6-11.5	Radiometric IST		
IR120 WS	METNO	1 min	8-14	Radiometric IST		
IR120 CS	METNO	1 min	8-14	Radiometric IST		
IR120 AWS	DMI	10 min	8-14	Radiometric IST		
Other instruments						
DMIAWS	DMI	10 minute		-Wind -Radiation (short/long, in/out) -Humidity -T _{2m} , T _{1m} , T _{snow/ice} - Radiometric IST (IR120, see top of table)		
WS	METNO	1 min	-Radiation (long,in) - Radiometric IST (IR120, se of table)			
IMB	SAMS/DMI	2 hourly		Vertical Snow and Sea Ice temperature (every 2 cm)		
temperature measurements				● ↓ ● DMI ● ↓ ● DMI ● ● ● Danish Meteorological Ins		

Intercomparison experiment

National Physical Laboratory

- All instruments worked during intercomparison experiment
- Cold conditions challenging for setup and instruments

DMI

Danish Meteorological Institute

Instrument intercomparison coverage

Radiometer results, Brightness temperatures

- Sampling intervals for different radiometers: 1Sec 10 min
- DMI AWS placed about 40 meters away

Pairwise intercomparison, Mean

- Very different sampling intervals for different radiometers (1Sec 10 min)
- For intercomparison, interpolated to minute observations and averaged every 10 minute

mean difference [deg C]

Pairwise intercomparisons, stddev NPL

- AWS stands out due to 10 minute subsampling versus 10 minut averaging
- Stddev within 0.5 degrees C

met.no WS	0.39	0.50	0.77	0.49	0.14	0.00
met.no CS	0.23	0.40	0.73	0.46	0.00	0.14
DMI KT15	0.05	0.10	1.20	0.00	0.46	0.49
DMI AWS	1.17	0.92	0.00	1.20	0.73	0.77
NOC ISAR	0.40	0.00	0.92	0.10	0.40	0.50
DMI ISAR	0.00	0.40	1.17	0.05	0.23	0.39
	DMI ISAR	NOC ISAR	DMI AWS	DMI KT15	MetNO CS	MetNO WS

standard deviation

National Physical Laboratory

ISAR comparison

- No apparent dependencies on temperature, wind speed or insolation
- Differences might be due to: reference thermistor noise, window contamination effects and scan drum misalignment.

fident en me

SKY TEMPERATURES

- Large variability
- Agreement between DMI and NOCS ISARs
- -100 °C temperatures appears is the lower limit for KT15

ANGULAR DEPENDENCY

- Brightness temperatures
- Angles from Zenith (25,45, 55 incident)
- TBs at 125° about 0.25-0.5°C colder than at 155°,
- Differences can be more than 1°C.

FREEZE UP EXPERIMENT

- First large hole filled over night
- New experiment last day
- One radiometer (MetNo)
- Smaller hole with ice contamination from sides

Example of validation of satellite IST with radiometer comparisons

- Validated againt DMI TIR on AWS
 - 4.5 months (Jan-June, 2016)
 - Cambell Scientific IR120 (8-14 μm)
 - 10 minute observations

Satellite product	Spatial resolution	File granule	Data Provider
Metop_A AVHRR OSI 205	1.1 km	3 min	EUMETSAT OSI-SAF
NPP SUOMI VIIRS	750 m	5 min	NOAA
MODIS TERRA (MOD29.006)	1 km	5 min	NASA-GSFC
MODIS AQUA (MYD29.006)	1 km	5 min	NASA-GSFC

- Only best quality included
- Cold outliers in all products

- Cold tail evident in all products
- OSI-SAF Metop AVHRR looks OK.
- VIIRS_NPP shows a broad peak.

EXAMPLES, WITHIN 3H14MIN

VIIRS_NPP_20161104095949117195

Closest pixel	Metop_A AVHRR	VIIRS	MODIS TERRA	MODIS AQUA
Mean difference	- 0.4 K	-1.7 K	-1.4 K	-1.9 K
Median abs difference	0.8 K	1.5 K	0.8 K	1.1 K
RMSE	2.0 K	3.6 K	3.5 K	4.8 K
stdv (differences)	1.9 K	3.2 K	3.3 K	4.4 K
N(matches)	227	197	122	165

Cloud-free average	Metop_A AVHRR	VIIRS	MODIS TERRA	MODIS AQUA
Mean difference	-0.2 K	-0.9	-0.6 K	-1.7 K
Median abs difference	0.8 K	1.0 K	0.7 K	1.1 K
RMSE	1.7 K	2.8 K	1.4 K	3.5 K
stdv (differences)	1.7 K	2.7 K	1.3 K	3.1 K
N(matches)	173	26	52	75

Uncertainty budget for traditional in situ IST observations

- Operational satellite products require operational in situ observations for monitoring and validation.
- iSVP Buoy observations available from IABP through GTS
- Task: How can we best use the GTS observations for satellite validation ?
 - Deploy iSVP buoys
 - Perform inter-comparison of iSVP observations
 - Assess the different uncertainty components when validating satellite IST
 - Automatic QC procedures to identify representative observations

Satellite vs. In situ

- Differences include:
 - Uncertainty on iSVP sensor
 - Uncertainty on satellite IST product
 - Spatial difference (footprint vs. point)
 - Temporal difference
 - Vertical difference (skin vs. snow, 1m or 2m air temp)

Spatial Variability

		N(obs)	Distance	Duration	Stdv	Bias to	Spatial	
					(σ)	AWS	stdv	
	Part 1	718	4.08 km	00:59:45	0.69 °C	-0.01 °C	0.25 °C	
	(Apr-02)							
	Part 2	709	3.04 km	00:59:00	0.42 °C	0.50 °C	0.12 °C	
	(Apr-03)							
fiducial r temperat measure	ererence ture ments						DMI Danish Meteorol	29 ogical Institut

2

IST along track (IR120) IST site (DMI AWS)

3.5

IST along track (IR120) IST site (DMI AWS)

2.5

4

3

3

2.5

2

1.5

distance [km]

distance [km]

1.5

1

Temporal difference

- Large hourly variability, compared to SST
- Three years of AWS data, + Tara + ARMS data

Vertical difference

- AWS Qaanaaq, 2015-2017
 - T2m Tskin
 - Large wind speed
 dependency

iSVP buoys

- Two iSVP buoys deployed in January 2017, at AWS site
- Wrong software, reporting -5°C !
- Two new deployed in April, 2017
- New buoys recovered in June
- Old buoys left on ice -> ocean

Buoy inter-comparison with AWS

22

New Buoy 1

New Buoy 2

- Buoys 2-4 degrees warmer than IST
- Stddev 3-5 degrees, lowest for new buoys

fiducial reference temperature measurements

Old Buoy 1

Old Buoy 2

CONCLUSIONS

- A successfull pilot IST FICE conducted
- Challenging environmental conditions
- Mean radiometer differences between 0.21 and 1 °C
- Satellite validation against TIR:
 - All products have diffuculties detecting the clouds
 - Metop_A had highest data return and showed best performance
- iSVP buoys within 1 meters showed up to 20 degrees C difference
- Sampling effects much larger than algorithm effects
- Effect of angular dependency: 0.25-0.5°C
- FICE report available, paper in preparation

Way forward

- Repeat campaign:
 - Additional FRM TIR calibration experiments in cold conditions
 - Spatial variability experiment with drones
 - Freeze-up experiment with larger basin
 - Measurement of surface emissivity
- Uncertainties on FRM TIRs should be evaluated
- Need for an all-year maintained TIR FRM radiometer at, e.g. Summit
- Systematic intercomparison of all satellite IST products (SNOs)

Questions ?