

Calibration and In-Flight Performance of the Sentinel-3 Sea and Land Surface Temperature Radiometer

<u>Dave Smith;</u> Arrow Lee; Mireya Extaluze; Edward Polehampton; Tim Nightingale; Elliot Newman; Dan Peters

RAL Space STFC, United Kingdom

dave.smith@stfc.ac.uk

ATSR Series

1991-2000 ATSR-1

1995-2008 ATSR-2

2002-2012- AATSR

3

SLSTR Key Requrements

- Continuity of Sea and Land Surface Temperature datasets derived from (A)ATSR
- Additional bands for fire radiative power measurements and improved cloud detection
- AATSR Level-3 product at userdefined spatial resolution Europe daytime Feb 2011 at 0.25°

RAL Space

On-board calibration sources

Dual-View Capability

Daily global coverage (with 2 satellites)

ENVISAT AATSR monthly composite

Global SST

ENVISAT AATSR hot spot fires and world fire atlas

Casadio et al; ALGO3 persistent hot spot sites (1991-2009) RSE 2012

SLSTR instrument

_ . 0

VIS/SWIR

(MWIR)

Sun

44001

TIR : 3.74µm, 10.85µm, 12µm SWIR : 1.38µm, 1.61µm, 2.25 µm

1km at nadir for TIR, 0.5km for

NE Δ T 30 mK (LWIR) – 50mK

SNR 20 for VIS - SWIR

0.2K for IR channels

VIS: 555nm, 659nm, 859nm

	RAL Space
TEL SOM	
W	

Nadir swath	>74°	(1400km swath)
Dual view swath	49°	(750 km)
Two telescopes	Φ 110 mm	n / 800mm focal length

Spectral bands

Spatial Resolution

Radiometric quality

Radiometric accuracy

On-Board Calibration

Blackbody Sources for TIR VISCAL for solar channels

2% for Solar channels relative to

On-Board Calibration systems

Thermal InfraRed Blackbodies

VIS-SWIR Channels VISCAL

Effective e >0.998 Z T non-uniformity < 0.02 K r T Abs. Accuracy 0.07 K l T stability < 0.3 mK/s 8 PRT sensors + 32 Thermistors

Zenith diffuser + relay mirrors Uncertainty <2%

SLSTR-A

Calibration at RAL - Jan-June 2015

Sentinel-3A launch - Feb 2016

First Image - March 2016

In-Orbit Commissioning Review – July 2016

Hurricane Ophelia 15/10/2017

Arrived at RAL for calibration – Oct 2016

In-Air Tests – October – Nov 2016

In-Vacuum Tests – Nov 2016 – Feb 2017

S3B Launch – Spring 2018

SLSTR-B = Refurbished Proto-Flight Model (PFMr)

Refurb includes: Rebuilt BB1 New flight BB2 Recoated telescope aperture stop to reduce internal strays

The Goal

To ensure the interoperability of satellite datasets it is a requirement for their measurements to be calibrated against standards that are traceable to SI units

For temperature this is the International Temperature Scale of 1990

For IR instruments such as SLSTR the traceability is achieved via internal BB sources

10

SLSTR L1 Processing

RAL Space

Processing specification defined by

ATBD -> DPM L0 and L1 Product Specifications

Each spectral band (5 thermal bands) and detector element (2x2) for each for each earth view (separate for nadir and oblique) has unique set of calibration calibration coefficients

= 40 for IR channels alone

Contained in Satellite Characterisation and Calibration Database Document (S-CCDB) Configuration controlled by MPC

SLSTR IR Channel Calibration Budget

Instrument Calibration – Objectives

- Provision of calibration data needed for data processing chain
- Does the end-to-end flight instrument calibration scheme work?
 - New optical design 2 telescopes not 1, multiple detectors per channel
 - OME thermal design not based on AATSR heritage
- Does the instrument calibration work over the full field of view and dynamic range?
 - Wider instrument swath compared to AATSR
 - Nonlinearity, Noise performance, Dynamic range
- Does calibration work in flight representative environment?
 - Nominal BOL
 - EOL (Hot)
 - Orbital temperature variations

Calibration Topics

IR Radiometry

- Blackbody calibration
- Radiometric accuracy over dynamic range
- Linearity
- Radiometric noise performance
- Orbital Stability

Solar Channel Radiometry

- Calibration of VISCAL system
- Radiometric response over dynamic range
- Linearity
- Radiometric noise performance

Spectral Response Calibration

- In-band response
- Out of band response
- Temperature dependency of response

Geometric Calibration

- Pointing Direction (LoS)
- Spatial Sampling
- Co-Registration
- Image Quality (MTF)

Spectral Response Calibration

- Measurement technique:
 - Operated the SLSTR focal plane array as the detector in a Michelson Fourier transform spectrometer
 - Derived spectral responses from timeresolved interferograms collected by the FPA detectors
- Characterised:
 - Spectral responses of all standard channels (S1 – S9) at FPA temperatures of 87K, 92K, 100K
 - Spectral polarisation (depth, plane and unpolarised response) of longwave channels (S7 – S9) at an FPA temperature of 87K

© 2017 RAL Space

Thermal IR Calibration Facility

Initial Trials with STM completed April 2012

TV and calibration of S3A instrument March-May 2015

S3B Calibration Oct 2016 – Feb 2017

S3C 2019

ESA requirement to perform calibration tests under flight representative conditions.

- Thermal balance
- Steady State
- Instrument fully operational

S3D 2020...

IR Calibration Test Summary

RAL Space

- Calibration at 'Nominal' BOL conditions
 - Centre of Nadir/Oblique views
 - On-Board BBs at nominal settings (250K, 300K)
 - Test over full dynamic range (5K intervals)
 - Test over full swath (reduced number of scene temperatures)
- Calibration at 'Hot' EOL conditions
 - Centre of Nadir/Oblique views
 - On-Board BBs at nominal settings (250K, 300K)
 - Test over part dynamic range (10K intervals)
- Tests with different on-board BB temperatures
 - Test performed at 'Nominal' BOL conditions
 - Currently at 'low', 'medium', 'high' power settings
 - +Y and -Y BBs will be switched
 - Test over part dynamic range (10K intervals)
- Orbital simulation tests

Both instruments have comparable NEDT performance and well inside mission requirements

IR Calibration - Counts Vs. Temps

70us integration time shown only

Min temperature achieved is 224K

Saturation of S7 > 300K (additional step at 305K to confirm)

IR Calibration Initial Results

© 2017 RAL Space

RAL Space

Non-Linearity of S8 and S9 consistent with expected behaviour of PC MCT detectors.

S3A and S3B show very similar behaviour.

Creation of NL Table

Measured Counts and BB Radiances normalised to signal corresponding to 65535 counts

$$y = \frac{L_{actual}(DN) - L(0)}{L(DN_{ref}) - L(0)}$$
 - from thermometers
$$x = \frac{DN_{meas}}{DN_{ref}}$$
 - from SLSTR

Polynomial function fitted to data to generate coefficients for NL function

$$NL = \sum_{i=2}^{n} \frac{a_i}{a_1} x^{i-1}$$

Digital counts are linearized using DN = DN/(1.0 + NL(x))

Measured - Actual BT SLSTR-B

Source Brightness Temp (K)

220 2 © 2013 RAL SPACE

Source Brightness Temp (K)

Measured - Actual BT SLSTR-A

Why the differences?

Non-Blackness of optical stops (i.e. $\epsilon < 0.9$) causing non-uniform thermal background

Measurements by PTB confirm 2015 investigation

Hence modification to stop coatings

Temperature gradients in flight BBs

Thermal modelling shows asymmetry of baseplate temperatures Analysis of BB radiances in progress

Black-Body Cross-Over Test

Post launch – we can 'check' BB signals by comparing the signals when the BBs are at the same temperatures. This is achieved by switching the heated BB and allowing their temperatures to cross-over.

RAL Space

Test is performed during ground calibration as a baseline

Comparison DN vs BB Temps

282.8 283.0 283.2 283.4 283.6 283.8 284.0 284.

Temp (K)

2nd Cross Over (RAD08)

285.0 285.2 285.4 285.6 285.8 286.0 286.2

Temp (K)

S7 Ob BB Signal

282.8 283.0 283.2 283.4 283.6 283.8 284.0 284.2

Temp (K)

S3B BB Counts at Cross-Over

BB X-Over 1 - Temp = 283.529K

	+YBB	-YBB	ΔDN	ΔT
S7 Nadir	23501	23554	53	0.082
S8 Nadir	26397	26394	-3	0.055
S9 Nadir	24735	24778	43	0.101
S7 Oblique	23524	23584	60	0.002
S8 Oblique	26560	26591	31	0.002
S9 Oblique	24872	24896	24	0.002

BB X-Over 2 Temp = 285.690K

	+YBB	-YBB	ΔDN	ΔΤ
S7 Nadir	25077	25070	-7	-0.010
S8 Nadir	27516	27511	-5	-0.011
S9 Nadir	25706	25723	17	0.038
S7 Oblique	25114	25079	-35	-0.050
S8 Oblique	27722	27700	-22	-0.046
S9 Oblique	25854	25831	-23	-0.054

© 2016 RAL Space

S3A BB Counts Comparison at X-Over

Post Launch – 29 Mar-2016

BB X-Over 1 - Temp = 289.1392K

	+YBB	-YBB	ΔDN	ΔΤ
S7 Nadir	24658	24745	87	0.108
S8 Nadir	29764	29777	13	0.026
S9 Nadir	27087	27093	6	0.017
S7 Oblique	24585	24685	100	0.128
S8 Oblique	30162	30171	8	0.017
S9 Oblique	27363	27364	1	0.004

BB X-Over 2 Temp = 290.5619K

	+YBB	-YBB	ΔDN	ΔΤ
S7 Nadir	25904	25896	-8	-0.010
S8 Nadir	30454	30443	-11	-0.022
S9 Nadir	27490	27481	-9	-0.024
S7 Oblique	25821	25794	-27	-0.031
S8 Oblique	30849	30821	-28	-0.054
S9 Oblique	27762	27742	-20	-0.052

Pre Launch – 29 Mar-2016

BB X-Over 1 - Temp = 280.85K

	+YBB	-YBB	ΔDN	ΔT
S7 Nadir	18868	18898	31	0.053
S8 Nadir	25543	25531	-12	-0.025
S9 Nadir	22593	22581	-12	-0.036
S7 Oblique	18819	18857	37	0.065
S8 Oblique	25830	25809	-21	-0.043
S9 Oblique	22797	22777	-20	-0.059

BB X-Over 2 Temp = 285.65K

	+YBB	-YBB	ΔDN	ΔT
S7 Nadir	22010	22016	6	0.009
S8 Nadir	27963	27955	-8	-0.017
S9 Nadir	24311	24304	-7	-0.019
S7 Oblique	21942	21937	-5	-0.007
S8 Oblique	28280	28257	-24	-0.047
S9 Oblique	24527	24509	-18	-0.049

On-Orbit Monitoring

- Routine monitoring of SLSTR performance is performed by Sentinel-3 Mission Performance Centre
 - Analysis of parameters critical for on-orbit calibration
- Analysis of SLSTR data are performed using.
 - Level-0 data are provided via the MPC FTP server.
 - Level-1 assessment is made via IPF products made available on the MPC server.
- Routine monitoring plots for L0 data are available at: <u>http://gws-</u> <u>access.ceda.ac.uk/public/slstr_cpa/phase_E1/SLSTR_Calibration.html</u> with username RAL_monitoring and password Sentinel3_RAL.

All channels within specification

BB Temperatures

-0.04

Heated BB temperature showed increase towards perihelion – Tbb ~ 304K – just below S7 saturation threshold (305K).

May need to reduce heater power to avoid Tbb = 305K

Small drift of PRT#1 (centre of BB) observed

FRM4STS Workshop - NPL 2017 38

RAL Space IR offsets show small variation due to detector and optics temperature variations.

Offset variations will determine minimum BTs (see later slides on S8 minimum temperature)

Note each detector and odd/even pixels have different offset values

S7 shows change between gains of Nadir and Oblique views ~ 0.1%

S8/S9 show small differences <0.01%

Tomazic et al Eumetsat Conference 2016

FRM4STS Workshop - NPL 2017

Conclusions

- Pre-Launch Calibration allows us to validate the end-to-end instrument flight calibration systems against known reference targets.
 - Not possible after launch
 - Provides a reference dataset against which the processing algorithms can be verified.
- Papers on calibration results are being prepared
- L1 products contain basic uncertainty estimates
 - Noise derived from BB sources
 - Estimates of calibration uncertainties from pre-launch characterisation
 - Improvements are foreseen...
- Traceability chain needs to be documented in-order for SLSTR to become a reference sensor.

- Leonardo (formerly Selex ES), Instrument prime contractor, supply of Detector Assembly (the Focal Plane Assembly (FPA), the Front End electronics (FEE) and the Cryocooler (CCS)).
- JOP, supplier of opto-mechanical enclosure.
- RAL, responsible for calibration and systems design consultancy under ThalesAlenia as Sentinel 3A prime contactor.

Science & Technology Facilities Council Rutherford Appleton Laboratory

Additional Slides

References

Calibration Plan

David L. Smith, Tim J. Nightingale, Hugh Mortimer, Kevin Middleton, Ruben Edeson, Caroline V. Cox, Chris T. Mutlow, Brian J. Maddison, Peter Coppo "Calibration approach and plan for the Sea and Land Surface Temperature Radiometer" *J. Appl. Remote Sens.* 8(1), 084980 (Jun 30, 2014). [doi:10.1117/1.JRS.8.084980]

Description of SLSTR design

Coppo, B. Ricciarelli, F. Brandani, J. Delderfield, M. Ferlet, C. Mutlow, G. Munro, T. Nightingale, D. Smith, S. Bianchi, P. Nicol, S. Kirschstein, T. Hennig, W. Engel, J. Frerick, J. Nieke, "SLSTR: A High Accuracy Dual Scan Temperature Radiometer For Sea And Land Surface Monitoring From Space", Journal of Modern Optics, 57(18), 1815-1830 (2010) [doi:10.1080/09500340.2010.503010]. RAL Space

Calibration approach and plan for the sea and land surface temperature radiometer

David L. Smith,^{a,o} Tim J. Nightingale,⁴ Hugh Mortimer,^a Kevin Middleton,⁸ Ruben Edeson,⁴ Caroline V. Cox,⁴ Chris T. Mutlow,^a Brian J. Maddison,⁴ and Peter Coppo^b ^aRutherford Appleton Lab Space, Science and Technologies Facilities Council, Harvell Oxford, OX11 0QX, United Kingdom ^bSelex-ES, Via, A. Einstein, Florence 35, SO031, July

Abstract. The sea and land surface temperature radiometer (SLSTR) to be flown on the European Space Agency's (ESA) Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21 year dataset of the along-track scanning radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of <0.3 K traced to international standards. To achieve, these low uncertainties require an end-to-end instrument calibration strategy that includes prelaunch calibration at subsystem and instrument level, on-board calibration systems, and sustained postlaunch activities. The authors describe the preparations for the prelaunch calibration activities, including the spectral response, the instrument level alignment tests, and the solar and infrared radiometric calibrations. A purpose built calibration rig has been designed and built at the Rutherford Appleton Laboratory space department (RAL Space) that will accommodate the SLSTR instrument, the infrared calibration sources, and the alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally, the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that the calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions and the deployment of ship-borne radiometers. © The Authors, Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.084980]

Keywords: SLSTR; Sentinel-3; calibration; radiometry; infrared; thermal; visible; SWIR.

Paper 14098SSP received Feb. 13, 2014; revised manuscript received May 20, 2014; accepted for publication May 21, 2014; published online Jun. 30, 2014.

1 Introduction

The Senfinel-3 mission is one of a series of spacecraft that make up the space segment of the Copernicus program¹ and will measure ocean and land surface parameters. The mission comprises four main instruments the sea and land surface temperature nationeter (SLSTR), the ocean and land color instrument (OCLI); a dual-frequency (Ku and C band) synthetic aperture radar atlineter (SRLL), and a microwave radiometer.

SLSTR (Fig. 1) will be used to retrive global sea surface temperatures (SSTs) to an uncertainty of <0.3 K traced to international standards and will continue the twenty-first-year datasets of the along-track scanning radiometer (ATSR) series. SLSTR shares many features of the ATSR sensors including thermal infrared (IR) spectral bands that are cooled using a Stirling cycle cooker, a dual view allowing the same terrestrial scene to be viewed through two atmospheric paths, a nadir view and an along-track view at 55 deg zenith angle, two blackbody (BB) sources to provide continuous calibration of the IR channels, and a diffuser-based visible calibration (VISCAL) source for calibrating the solar reflectance bands. The optical design of the instrument is a development of the ATSR conical scanning design⁷ to provide a 1400 km near-nadir view and 750 km inclined view facing backward toward the statellite line of sight. The nominal

084980-1

*Address all correspondence to: David L. Smith, E-mail: dave amit/@stfr.ac.uk

Journal of Applied Remote Sensing

Vol. 8, 2014

Line-Of-Sight Model and Verification

- Inputs to LoS Model
 - Direction cosines of detectors relative to nominal beam
 - Scan cone angles
 - Scan rotation angles
 - Encoder characterisation
 - Scan inclination angles
- Required Uncertainty
 - Total uncertainty wrt optical cube, < 0.05° (180")
 - Period <30s, Precision <7"
 - Period < 1 orbit, Precision <15"
- Line-Of-Sight model in L1 processor is being modified to account for alignment differences in the two scanners compared to ideal pointing

47

S3B - Geometric calibration: LoS Measurements vs Model

Solid = model, squares = measurements, x = JOP cone model

Updated processor model gives excellent agreement with measurements ©

All corresponding channels are optically co-registered

VIS/SWIR Calibration

- VISCAL is illuminated once per-orbit by the Sun
- Pre-Launch Calibration is to characterise key instrument performance
 - Radiometric response of each detector
 - Signal-to-Noise performance of each detector
 - Reflectance factor of VISCAL system
 - Polarisation sensitivity

Source Setup

- 6 lamps, one (lamp 3) has a variable aperture. 0%=open, 100%=closed. Percentage is not proportional to open area.
- Lamp settings controlled and data recorded using labview interface on a PC
- Three spectrometers mounted on the sphere to monitor source output and traceability to NPL calibration
 - 2 SWIR
 - 1 for VIS-NIR

RAL Space

NPL-RAL-TAS Sphere Intercomparisons

An exercise was initiated to compare spectral radiances of integrating sphere sources used for SLSTR (RAL Space) and OLCI (Thales Alenia Space, France) calibrations.

NPL have performed measurements using spectroradiometers and reference source at host institution.

Measurements performed at RAL in December during SLSTR calibration campaign. Data being processed.

Measurements for OLCI performed in April

RAL Space

NPL's ASL spectrometer and source viewing RAL integrating sphere source.

Good agreement at S1-S3, S5. Discrepancies at S4, S6

© 2017 RAL Space

© 2017 RAL Space

rkshop - NPL 2017

55

SLSTR-A Viscal Reflectance Factors (Nadir) RAL Space

<u>∳</u> ⊕

Φ

Φ

4

 $\mathbf{\Phi}$

 $\mathbf{\Phi}$

Φ

<u>4</u> • 奪

0 4

Differences have been observed between different methods of evaluating VISCAL reflectance factors in SWIR channels.

Detector-Detector differences

- Image stripes

Differences in absolute factors

- Especially S6

BOL on-orbit measurement of VISCAL signals appear to be more in-line with vicarious calibration + destriping correction.

S1 and S5 Results show good consistency with different methods!

VISCAL Pixel Range and Uniformity

 9.00×10^{5}

mirror position

8.95×10

9.05×10

 9.10×10^{6}

RAL Space

We performed a set of measurements where the source illuminated the diffused and measured the signal response for different scanner positions.

Results determined the range of pixels to use on-orbit.

Showed a significant non-uniformity in the measured responses.

- For SWIR channels different for each detector
- Greater than expected variation in diffuser BRDF

Why?

Pupil Uniformity – Along Scan

To investigate cause of non uniformity we performed some additional measurements at centre of earth view.

We illuminate the earth view with a 50mm diameter source (i.e. underfilling the pupil) and measure the instrument response as a function of scanner position (along scan direction)

Results show all VIS channels appear to fill main aperture uniformly.

Differences seen in SWIR channel A and B stripes. Less uniform response

RAL Space

Pupil Uniformity – Along Track

measured sphere position (cm)

We then repeated the measurements, this time moving source in vertical direction (along track direction)

Results show all VIS channels appear to fill main aperture uniformly.

Noticeable differences seen in each SWIR detector.

Conclusion:

Main telescope aperture is not the primary pupil for the SWIR channels

Provides root cause for variations in measured instrument response and Rcal

S5a

1.0

0.8

02

1.0 det 2

0.8

stunoc

0.4

S3

S5b