JAXA SST Products and Validation Activities -GCOM-W, GCOM-C And Himawari-8

Misako Kachi¹⁾, Yukio Kurihara²⁾, and Hiroshi Murakami¹⁾

1) JAXA/EORC 2) JMA

FRM4STS International Workshop @Teddington, UK, 16-18 Oct., 2017

Schedule of JAXA Satellites (lower orbit)

Mission status:

On orbit (E Extended Life Period)

Development

Study

2

Schedule of JMA satellites (geostationary orbit)

Source: http://www.data.jma.go.jp/mscweb/en/himawari89/himawari89plan.html

- Band: x3 increased (5-band -> 16-band)
- Resolution: x4 improved (VIS: 1km -> 0.5 km)
- Interval: x3 increased (30-min -> 10-min for fulldisk, 2.5-min for local area)

(provided by JMA)

Center Wavelength of Himawari-8/AHI						
Band	Wavelength (µm)	Resolution (km)	Band	Wavelength (µm)	Resolution (km)	
1	0.47	1	9	6.9		
2	0.51	I	10	7.3		
3	0.64	0.5	11	8.6		
4	0.86	1	12	9.6	2	
5	1.6		13	10.4	2	
6	2.3	2	14	11.2	[
7	3.9	Ζ	15	12.4		
8	6.2		16	13.3	, ,	

3

Global Change Observation Mission – Climate (GCOM-C) "SHIKISAI" (JFY2017)

Characteristics of GCOM-C

- Cover global area in ~2 days with wide swath more than 1150km
- > Obsevre atmosphere, land & ocean by 19 channels
- 250m horizontal resolution

	Characteristics of SGLI spectral bands							
		λ	$\Delta\lambda$	L _{std}	L _{max}	SNR@L _{std}	IFOV	
	CH			$W/m^2/sr/\mu m$		-		
		1111	1	K: Kelvin		Κ: ΝΕΔΤ	111	
	VN1	380	10	60	210	250	250 /1000	
	VN2	412	10	75	250	400	250 /1000	
	VN3	443	10	64	400	300	250 /1000	
	VN4	490	10	53	120	400	250 /1000	
	VN5	530	20	41	350	250	250 /1000	
	VN6	565	20	33	90	400	250 /1000	
	VN7	673.5	20	23	62	400	250 /1000	
ᢣ	VN8	673.5	20	25	210	250	250 /1000	
	VN9	763	12	40	350	1200*	250 / 1000*	
	VN10	868.5	20	8	30	400	250 /1000	
\rightarrow	VN11	868.5	20	30	300	200	250 /1000	
≽	POL1	673.5	20	25	250	250	1000	
≯	POL2	868.5	20	30	300	250	1000	
	SW1	1050	20	57	248	500	1000	
	SW2	1380	20	8	103	150	1000	
	SW3	1630	200	3	50	57	250 /1000	
	SW4	2210	50	1.9	20	211	1000	
	TIR1	10800	700	300K	340K	0.2K	250/ 500 /1000	
	TIR2	12000	700	300K	340K	0.2K	250/ 500 /1000	

Instrument	Second-generation Global Imager (SGLI)		
Channels	19 channels (from UV to TIR)		
Orbit	Sun-synchronous orbit Altitude: ~800km Descending Local Time: 10:30		
Swath width, Resolution	Swath width: 1,150km (except TIR) 1,400km (TIR) Resolution:250m -1km		
Launch	Latter half of JFY2017		
Designed life	5 years		

-4

SGLI Land & Sea Surface Temperature in 250m res.

SGLI Thermal-Infrared channels have 250m res. and 1400km swath by which SGLI can observe land and surface temperature high-frequently and in finer resolution.

Simulated by LANDSAT-8/TIRS 11 μ m 100m data on 23 Jan. 2014

1-km resolution↓

250-m resolution

SST algorithm for SGLI

- SST calculation: Bulk-SST using Quasi-physical method with parameterized infrared radiative transfer equation. Using IR & NR (normal-mode: day & night) and IR & VIS (night-mode: nighttime only) channels.
- Cloud screening: Bayesian to estimate cloud probability by using for IR & VIS channels in day-time and IR only in night-time.
- Introduction of Q-method to mitigate systematic errors depending on seasons and area.
- SST algorithm was also applied to Himawari-8/AHI and Terra & Aqua/MODIS considering synergies and consistencies. To increase consistency, inter-calibration method focused on SST is also developed.

New cross-calibration method for IR channels

- In order to produce consistent SST datasets from various IR imagers (AHI, MODIS, VIIRS, SGLI), we have introduced a new physical SST algorithm applying to all IR imagers. Inconsistencies around about 0.3~0.4 K are still found due to calibration of each instrument.
- GSICS correction was applied to Himawari-8/AHI, but improvement in SST retrieval was very small.
- Currently, we are developing a new crosscalibration method focused on SST, by using SST and transmittance data which are physically retrieved from satellite IR data.
- The method is expected to improve consistency in satellite SSTs effectively.

F denotes a parameterized radiative transfer equation which was derived by the simplification the IR radiative transfer equation.

Calibration Results Applied to MODIS and AHI

Blue: original Himawari-8 SST, red: corrected Himawari-8 SST, and black: Terra/MODIS SST. Correction coefficients calculated by the comparison between simulated and observed Himawari-8 data were used. Himawari-8 SSTs were determined from 10.4, 11.2, and 8.6 um band data.

The result shows a good capability of the method that **reduced the mean difference of ~0.2 K** between Himawari-8 and Terra/MODIS SSTs to **nearly zero**.

JAXA

SST Long-term validation by iQuam

Monthly bias and STD with iQuam v2

Solid: Himawari-8/AHI on Dash: Terra/MODIS Blue: original SST Red: corrected SST

- iQuam buoy data is really useful to check long-term variation of SSTs.
- Recent AHI normalmode SST shows slightly enhanced negative bias trends. We are checking if this came from sensor trend.

JAXA

AHI SST comparison with ISAR

- AHI SSTs with the cloud probability less than 0.3 were chosen for the comparison.
 ISAR data (provided by Prof. P. Minnet) within 1.5 km and 10 min from each AHI
 - SST were chosen without any QC.
 Number of the match-ups are 3,933 from the cruises of AL38 to AL42 and Kaimei for July 2015 to February 2016.
- Since ISAR data number and period is limited, we will use the data as temporally product or evaluation for algorithm.
- We have also received ISAR data provided by Australian Bureau of Meteorology (ABoM), but not analyzed yet.

ISAR Validation results (normal-mode)

KA

	cruise	bias	median	STD	rSTD	Ν
davtime	AL38	-0.46	-0.56	0.76	0.30	37
	AL39	0.42	0.45	0.62	0.46	349
	<u>AL40</u>	<u>0.67</u>	<u>0.83</u>	0.66	0.39	81
	<u>AL40x</u>	<u>1.28</u>	<u>1.35</u>	0.68	0.46	81
	<u>AL41</u>	<u>2.35</u>	<u>2.43</u>	0.61	0.50	429
	AL42	0.16	0.17	0.63	0.68	742
	Kaimei	-0.07	-0.01	0.44	0.38	65
	cruise	bias	median	STD	rSTD	N
	cruise AL38	bias -0.40	median -0.39	STD 0.38	rSTD 0.38	N 47
	cruise AL38 AL39	bias -0.40 0.33	median -0.39 0.36	STD 0.38 0.53	rSTD 0.38 0.39	N 47 597
nighttime	cruise AL38 AL39 AL40	bias -0.40 0.33 -0.08	median -0.39 0.36 0.24	STD 0.38 0.53 0.96	rSTD 0.38 0.39 <u>1.03</u>	N 47 597 69
nighttime	cruise AL38 AL39 AL40 AL40x	bias -0.40 0.33 -0.08 0.40	median -0.39 0.36 0.24 0.73	STD 0.38 0.53 <u>0.96</u> 0.97	rSTD 0.38 0.39 <u>1.03</u> <u>1.06</u>	N 47 597 69 69
nighttime	cruise AL38 AL39 AL40 AL40x AL41	bias -0.40 0.33 -0.08 0.40 1.33	median -0.39 0.36 0.24 0.73 1.45	STD 0.38 0.53 <u>0.96</u> <u>0.97</u> 0.92	rSTD 0.38 0.39 <u>1.03</u> <u>1.06</u> <u>0.92</u>	N 47 597 69 69 649
nighttime	cruise AL38 AL39 AL40 AL40x AL40x AL41 AL42	bias -0.40 0.33 -0.08 0.40 1.33 0.25	median -0.39 0.36 0.24 0.73 1.45 0.26	STD 0.38 0.53 <u>0.96</u> <u>0.97</u> <u>0.92</u> 0.51	rSTD 0.38 0.39 <u>1.03</u> <u>1.06</u> <u>0.92</u> 0.53	N 47 597 69 69 649 836

ISAR Validation results (night-mode)

cruise	bias	median	STD	rSTD	Ν
AL38	-0.34	-0.33	0.30	0.28	46
AL39	0.11	0.15	0.44	0.26	494
<u>AL40</u>	0.24	0.50	<u>0.76</u>	<u>0.65</u>	55
<u>AL40x</u>	<u>0.72</u>	<u>0.99</u>	<u>0.76</u>	<u>0.68</u>	55
<u>AL41</u>	<u>1.12</u>	<u>1.34</u>	<u>0.87</u>	<u>0.85</u>	624
AL42	0.23	0.28	0.46	0.47	812
Kaimei	-0.06	-0.01	0.26	0.24	28

night-time

- Except for AL40 and AL41, expected results were derived (-0.4 \sim 0.4 K of bias, 0.5-0.7 K of STD during daytime, and 0.4 \sim 0.5 K of STD during nighttime).
 - AL40 seems to be more affected by clouds than others.
- Better performances of 3.9 um SST (night-mode) are also as expected.
- High biases of 1 ~ 2 K and large STDs of ~ 0.9 K against AL40, AL40x, and AL41 data need examinations.
 - Positive biases of AL39 & AL40 can be explained by AHI SST's issue of seasonal positive biases in northern high-latitude.
 - Positive biases of AL41 cannot be explained by above issue.

GCOM-W and Advanced Scanning Microwave Radiometer 2 (AMSR2)

AMSR2 Sensor Unit

✓ Launched on May 18, 2012

- ✓ Successor of Aqua/AMSR-E (2002-2011 (2rpm mode: 2012-2015)), providing continuous data for climate studies and operational applications
- ✓ AMSR2 is a multi-polarization and multifrequency microwave imager with conical scanning at 40 rpm
- ✓ Swath width is ~1600km@700km altitude
- ✓ Observes water-related geophysical parameters
- \checkmark High spatial resolution with 2m diameter antenna
- Improvement of on-board calibration target has resulted reduction of annual TB variation due to calibration and improvement of TB stability

Freq. [GHz]	Temp. res.	Beam width (-3dB) (res. at surface)
6.925/7.3	< 0.34 K	1.8° (35km x 62km)
10.65	< 0.70 K	1.2°(24km x 42km)
18.7	< 0.70 K	0.65° (14km x 22km)
23.8	< 0.60 K	0.75° (15km x 26km)
36.5	< 0.70 K	0.35° (7km x 12km)
89.0 A/B	< 1.20 K	0.15° (3km x 5km)

JAXA

AMSR2 6GHz and 10GHz SSTs

- Standard SST mainly uses 7GHz channels, and 10GHz research SST included in standard SST products uses 10GHz channels.
- 10GHz channels have advantage in finer (30km) resolution compared to that of 6GHz (50km).
- Disadvantage of 10GHz is poor sensitivity to low temperature range, less than 10 degC. Currently SST less than 9 degC is set as missing.
- Same algorithm was applied to GPM-Core/GMI and product was released to public in April 2015.

AMSR2 6GHz SST AMSR2 10GHz SST GMI 10GHz SST

Validation with

AMSR2 SST Ver.3 Validation (released on 1 Mar. 2017)

Validation with NOAA iQuam v2 buoys from 2 Jul. 2012 to 31 Dec. 2016. Match-up with differences within 2-hour in time and 30km in distance.

Other surface information we are working on ...

GCOM-C/SGLI

- Land surface temperature product
- Snow and ice covered area product
- Snow and ice surface temperature product
- Himawari-8
 - Thin ice detection product: in preparation

GCOM-W/AMSR2

- Sea ice concentration/sea ice extent product: availale
- Land surface temperature research product: now validating for release
- Thin ice detection research product: now validating for release
- Sea ice thickness product: new candidate for research product, under development
- Ice sheet monitoring over Greenland: in preparation

Summary

- Optical SST products are developed based on GCOM-C/SGLI algorithm
 - GCOM-C/SGLI SST algorithm is ready for launch in JFY2017
 - Himawari-8/AHI SST is distributed in GDS2.0 format (http://www.eorc.jaxa.jp/ptree)
 - Àqua/Terra MODIS & NPP/VIIRS SSTs are in preparation
 - New cross-calibration method is developed and introduced between AHI and MODIS.
 - Operational validation monitoring with iQuam buoys are in preparation to check long-term trend.
 - Validation using ISAR data is underway.
- PMW SST products are developed distributed based on GCOM-W/AMSR2 algorithm
 - GCOM-W/AMSR2 6 & 10-GHz SST, GPM/GMI 10-GHz SST, Windsat 6-GHz SST are distributed in GDS2.0 format (http://suzaku.eorc.jaxa.jp/GHRSST)

Validation using iQuam buoys shows 0.5 degC in RMSE.

- Operational validation monitoring web page is available (http://www.eorc.jaxa.jp/GCOM_W)
- Other surface information from GCOM-C, Himawari-8 and GCOM-W is/will be available.

backup

Matched ISAR data to AHI SST

Crouse	Period	Satellite zenith angle coverage	N (daytime)	N (nighttime)
AL38	23 Jun – 9 Jul, 2015	39.6 - 74.4	37 (0)	47 (0)
AL39	27 Jul – 31 Aug	39.5 – 74.3	349 (0)	597 (0)
AL40	27 Aug – 2 Sep	47.1 - 74.3	81 (0)	69 (0)
AL41	29 Nov – 17 Dec	35.4 - 72.3	430 (1)	649 (0)
AL42	26 Jan, 2016 – 18 Feb	36.0 – 70.9	742 (0)	836 (0)
Kaimei	19 Oct – 21 Oct 2015	40.8 - 41.3	65 (0)	31 (0)

(): total number of outliers