

NWIP - Biogenic carbon fraction fuel gases containing methane

(16ENG05-WP3.7)

Sanne Palstra, Harro Meijer (RUG) Jianrong Li, Adriaan van der Veen (VSL) Karine Arrhenius, Nijaz Smajovic (RISE)

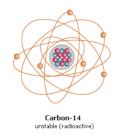
Outline

- Method biogenic carbon fraction
- Biomethane project
- Conclusions and recommendations for NWIP & ISO-standard

Method requirements

- Suitable for fuel gases containing methane
- Distinguish between <u>carbon</u> from renewable materials and fossil materials
- Including all hydrocarbons in the fuel gas
- Quantify range 0 100% biogenic carbon

Methods available


- Stable Isotope Method: ²H and ¹³C in CH₄
 - Limited in use
 - Limited in selectivity
 - Limited in quantification ability

→ Not suitable for unknown samples

Methods available

- Radiocarbon (¹⁴C) method
 - All fuel gases (with carbon)
 - High selectivity
 - Quantification within ±3% biogenic carbon

→ Suitable for NWIP/ISO-standard

Principle ¹⁴C method

Renewable materials: ¹⁴C value similar to recent atmospheric ¹⁴CO₂ values

Fossil materials: No ¹⁴C anymore due to radioactive decay over millions of years

¹⁴C-based biogenic carbon fraction

$$f_{bioC} = {}^{14}C_{sample} / {}^{14}C_{bioC}$$

Measurement range: 1.5% – 100% biogenic carbon

¹⁴C measurement

Since 1950s

Pretreatment sample material to pure CO₂, C or benzene

Current measurement techniques (natural level):

- Accelerator Mass Spectrometer (AMS) ->
 Counting ¹⁴C atoms (C or CO₂)
- Liquid scintillation counter (LSC) → Counting decay events (benzene)

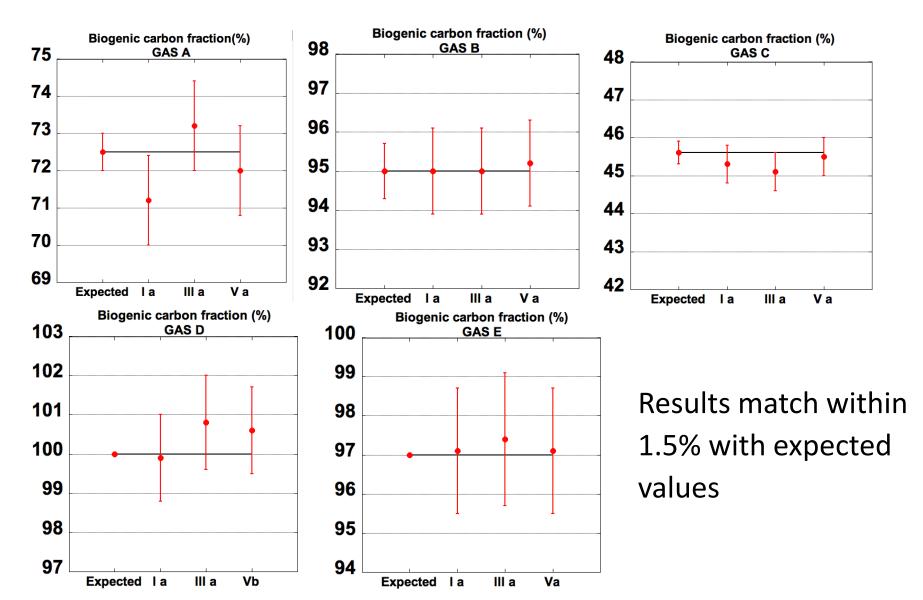
Existing standards

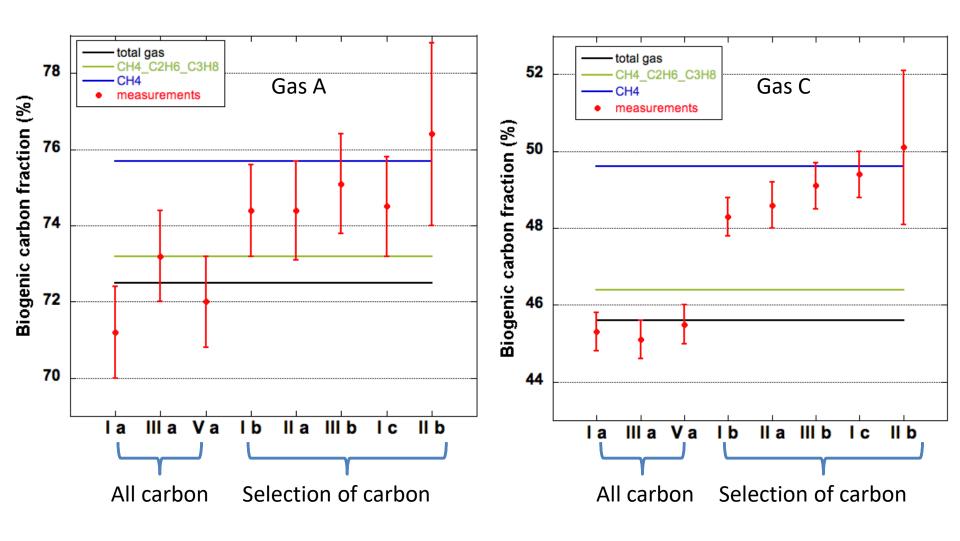
- ✓ Bio-based products: ASTM D6866 and CEN/TS 16640
- ✓ Waste (SRF): CEN/TS 15440-2
- ✓ Flue gas CO_2 : ISO 13833
- ✓ Plastics: ISO 16620-2
- ✓ Rubber: ISO 19984-2
- → No standard is entirely suitable for fuel gases

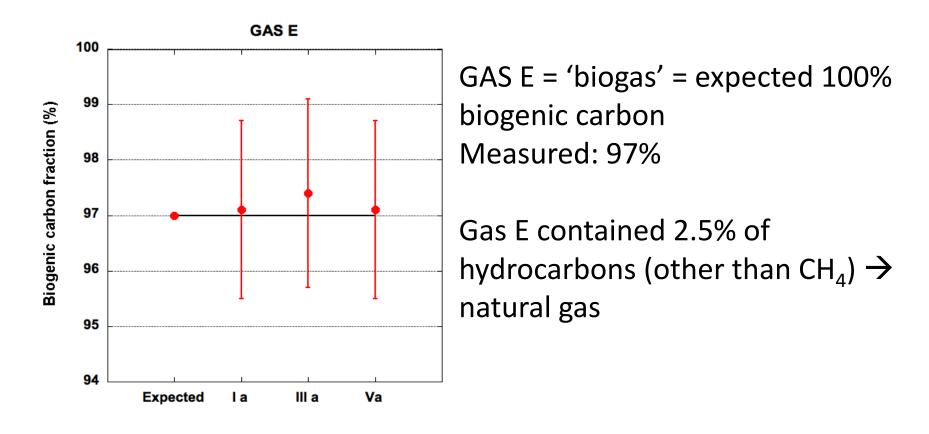
Biomethane project

- ¹⁴C-based test method for fuel gases containing methane
- Inter-Laboratory Comparison for ¹⁴C labs

Inter-Laboratory Comparison


- Five European ¹⁴C AMS labs
- Set of five samples: 2 biogas and 3 biogasnatural gas blends (45%, 75% and 95% biogenic carbon)


Results (all carbon included)


Results (all preparation methods incl. CH₄)

Alternative first check 100% biogas

 \rightarrow The appearance of other hydrocarbons than CH₄ can <u>in</u> some cases reveal the presence of natural gas in biogas

Main conclusions

- Very reliable and accurate (max. ±2%)
 method for fuel gases containing methane or
 methane and other hydrocarbons
- Sample preparation methods should include all carbon fractions present in sample

NWIP and ISO standard

Test method for ¹⁴C-based verification of biogas, biomethane, mixtures of natural gas with unconventional gases and renewable gases.

Also applicable for other fuel gases containing one hydrocarbon, mixtures of hydrocarbons or hydrocarbons mixed with CO₂ and/or CO.

Main recommendations

- Labs can use their own sample preparation and ¹⁴C measurement techniques as long as:
 - Sample preparation methods select all carbon
 - Lab methods are verified with reference gases

Project output

- Report of WP 3.7, 16ENG05 Metrology for Biomethane': "Test method (¹⁴C-based) for the biogenic carbon fraction in biomethane/biogas and in blends of biomethane/biogas and natural gas"
- NWIP: Analysis of natural gas Determination of the biogenic carbon fraction – Radiocarbon (¹⁴C) method
- Draft ISO-standard. Based on report WP3.7 and its recommendations.
- Peer-reviewed paper (to be submitted)

Questions?

