

Development of a standardised test method for ammonia in biomethane

Michael Ward¹ & Corentin Dussenne² ¹Gas Metrology Group, NPL ²Research and Innovation Centre for Energy, GRTgaz

16ENG05 Final Workshop, 8-9 September 2020, virtual meeting

Ammonia in Biomethane: Need for a NWIP

- NH₃ = Common trace impurity in Biomethane
- Product of anaerobic digestion of organic matter (amino acids)
- Corrosive in presence of water *Equipment damage*
- Fuel quality anti-knock processes in combustion
- Air Quality Particulate formation

- Source of NOx (combustion)

.: Negative Public Health/Environment Implications

Ammonia in Biomethane: Need for a NWIP

EN 16723-1 EN 16723-2

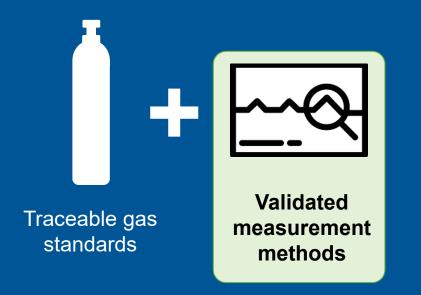
EN 16723: Natural gas and biomethane for use in transport and biomethane for injection in the natural gas network

Part 1: Specifications for biomethane for injection in the natural gas network

 NH_3 : $\leq 10 \text{ mg/m}^3$ ($\approx 14 \text{ }\mu\text{mol mol}^{-1}$)

Test Methods Cited: Neither validated nor harmonised

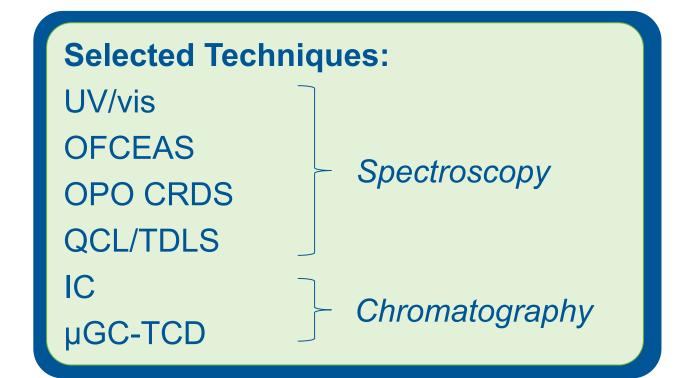
Conformity: Standardised Test Methods Required



Ammonia within EMPIR 16ENG05 Biomethane

Aim

To develop stable, metrologically traceable and accurate measurement standards and highaccuracy reference methods for ammonia in biomethane


Partners:

Ammonia within EMPIR 16ENG05 Biomethane

Ammonia within EMPIR 16ENG05 Biomethane

NWIP Selection Criteria

- Robustness: performance characteristics
- Metrological traceability
- Accessibility: Ease of set up/application
- Commercial Availability
- Measurement time: sampling/analysis
- Gas Consumption

Key Performance Characteristics*

- Repeatability/Reproducibility
- LOD/LOQ
- Stabilisation/Sampling time
- Linearity
- Selectivity
- Accuracy & Analytical Uncertainty

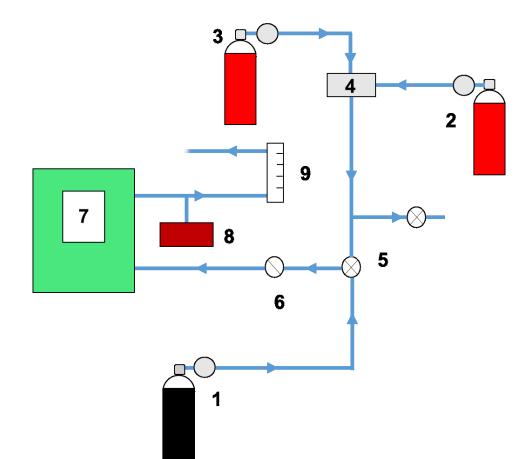
OFCEAS (RICE) and UV/vis (NPL) methods: Selected for NWIP

*Details given in: Ward M., et al. Development of standardised methods for the analysis of ammonia in biomethane, (In preparation)

NWIP – Ammonia content of biomethane

Natural gas – Analysis of biomethane - Determination of ammonia content by *spectroscopic* methods

- Structure:
- Introduction
- Scope
- Normative References
- Terms and Definitions
- Principle
- Apparatus
- Reagents and Materials
- Sampling
- Calibration
- Interferences
- Procedure
- Analysis
- Expression of Results
- Test Report


Scope:

- NH₃ in biomethane specific test method
- Commercial spectroscopic NH₃ analysers

 black box (independent of technique, more inclusive e.g. TDLS)
- Calibration and measurement of NH₃ @ EN 16723 specification
- Reference to existing *natural gas* (sampling), *air quality* measurement (analyser characterisation) and *gas metrology* (calibration) standards

System Setup: Key Components

Key:

- 1. N_2 purge gas cylinder + regulator
- 2. High purity CH_4 cylinder + regulator
- 3. Parent reference gas mixture + regulator
- 4. Dilution system (+ flow controller)
- 5. Open/Close Ball valve
- 6. Needle valve
- 7. NH₃ analyser
- 8. Pressure sensor
- 9. Rotameter/Flow meter

Sampling: Ammonia in Biomethane

NWIP focus: Cylinder sampling; Safety and Quality Considerations – Refer to ISO 10715

Pressurised Gas: Regulators, system pressure rating

Methane: Flammable mixtures in air – Inert O₂ free purge gas

Ammonia: Toxic – OEL = 36 mg/m³ (50 ppm) Long term, 14 mg/m³ (20 ppm) Short term (ECHA)

Adsorptive – material construction of wetted surfaces important*

Corrosive – maintain dry system + use corrosive resistant materials

Flow Control: Purge/passivation of system – *trace NH*₃ *is slow to stabilise*

Impurities (other than NH₃): Interfering absorbers – *check with analyser manufacturer*

Matrix Gas: Calibration gas must match sample gas e.g. Biogas vs Biomethane

*Vaittinen, O., Metsälä, M., Persijn, S. et al. **Adsorption of ammonia on treated stainless steel and polymer surfaces**. *Appl. Phys. B* 115, 185–196 (2014). <u>https://doi.org/10.1007/s00340-013-5590-3</u> (Note: NH₃ in N₂)

Calibration

- Perform a multipoint calibration when:
 - the analyser is first installed;
 - the measurement system has had maintenance that could affect its response characteristics;
 - the analyser shows drift in excess of performance specifications as determined via comparison with a calibration standard.

Calibration Strategies:

Multiple reference standards:

- Use a series of reference standards over the desired range of interest
- Should be in accordance with ISO 10723

Dynamic dilution system:

- Reference standard + CH₄ diluent
- Should be in accordance with ISO 6145

Materials

- Calibrations gases traceable to a national standard, certified in accordance with ISO 6142, ISO 6143 or ISO 6144.
- Diluent + zero gas (for dynamic calibration only), ≥99.999 % CH₄
- Purge gas (≥99.999 % N₂)

Summary and Concluding Remarks

- Need for standardised test methods for measuring NH_3 in biomethane
- EMPIR 16ENG05 Biomethane providing measurement infrastructure for industry
- NWIP method selection: OFCEAS and UV/vis
- Different techniques suitable standard method open to spectroscopic NH₃ analysers
- Existing tools from natural gas, air quality measurement + gas metrology standards

Thank you for your attendance

Department for Business, Energy & Industrial Strategy

FUNDED BY BEIS

Funding for this work has been provided EURAMETS EMPIR programme, co-funded by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy (BEIS).

