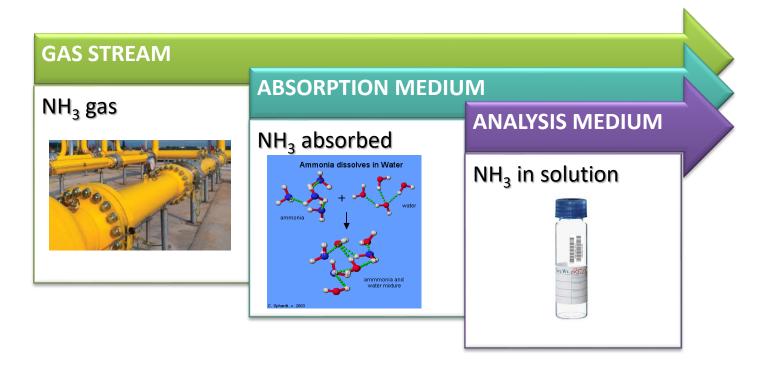


Measurement techniques and test methods for measuring ammonia content

Workshop on conformity assessment of biomethane

Gabriele Migliavacca INNOVHUB Stazioni Sperimantali per l'Industria

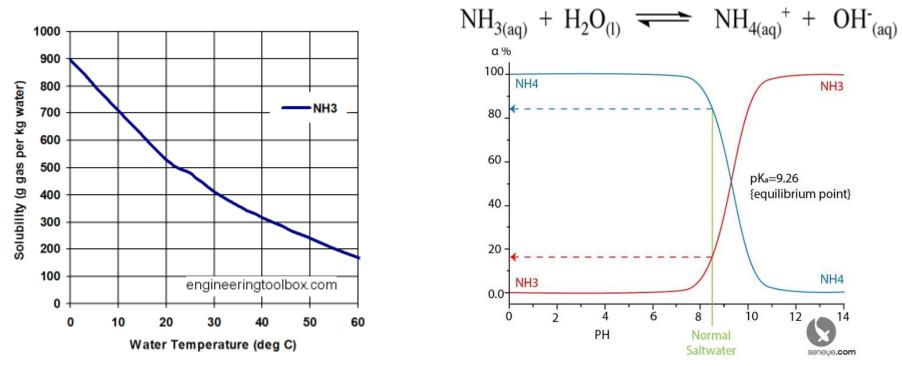
NEN Delft, 23rd January 2019


STAZIONE SPERIMENTALE

STAZIONI SPERIMENTALI PER L'INDUSTRIA

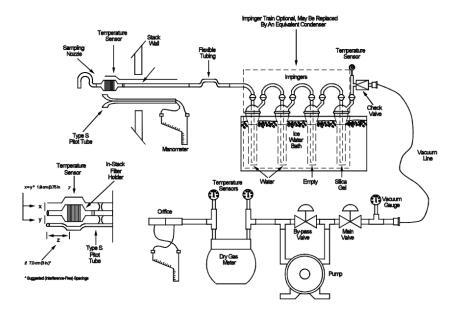
innovation and research

Ammonia sampling by absorption



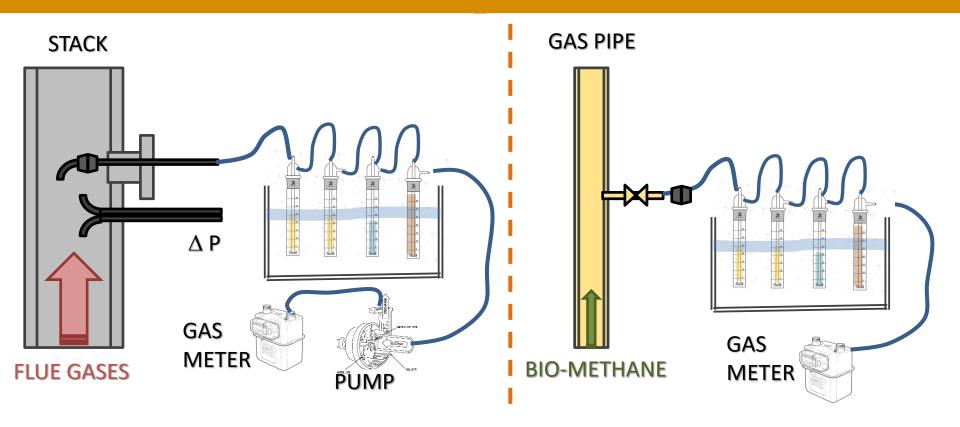
- Absorption methods, in solution or on cartridge, are widely used in air quality and in-stack measurements
- ✓ EPA CTM 027, NIOSH 6015, NIOSH 6016 and OSHA ID188 methods can be used as starting points for developing a suitable method for the sampling and analysis of ammonia in bio-methane

Ammonia solubility in water



- ✓ Ammonia has a very high solublity in water, mainly at low temperatures
- In acidic conditions mainly ammonium ions are present and a higher solubilisation of ammonia gas can be achieved
- ✓ A complete absorption of ammonia in water can be easily attained by bubbling the gas : this is the starting point of EPA CTM 027 method

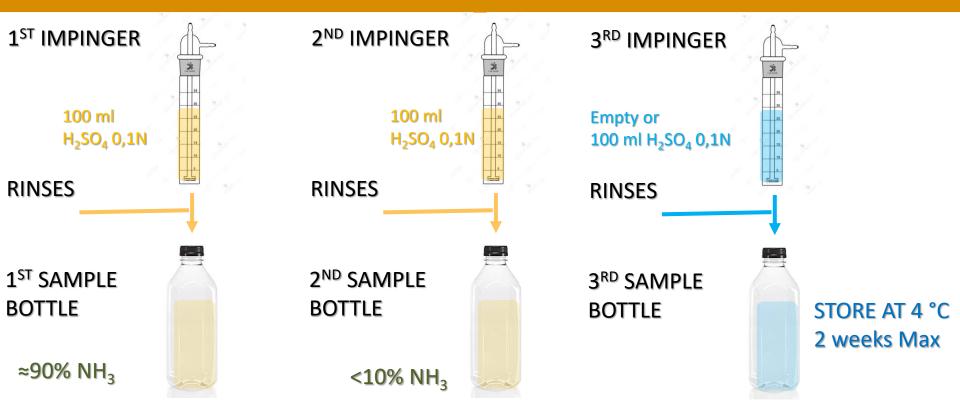
EPA CTM 027



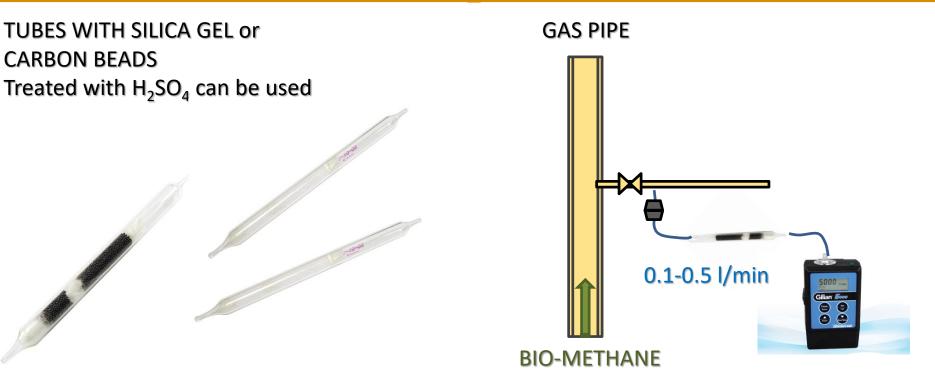
- The sampling train is the typical setup used for in-stack sampling using impingers
- It consists of a nozzle and a filter holder to collect particulate matter, placed in the stack, a set of four impingers in an ice-water bath and then a pump and a gas meters to quantify the amount of gas sampled. A pitot tube is used to maintain isokinetic conditions

EPA CTM 027 vs Bio-methane Sampling Train

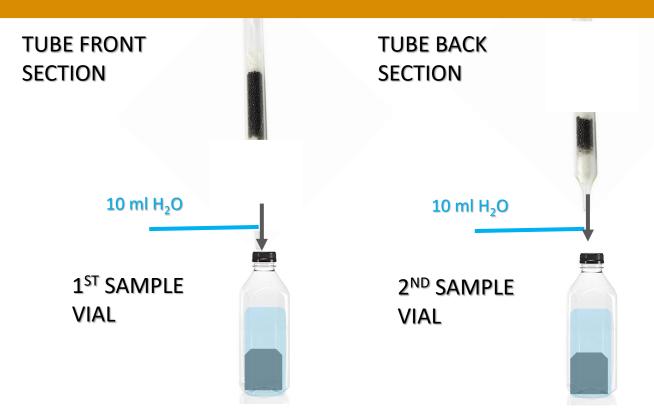
Isokinetic conditions for sampling can be neglected for bio-methane, as well as the filter
A suction nump can be unnecessary if the gas pressure is enough to maintain a stable bubbling


 A suction pump can be unnecessary, if the gas pressure is enough to maintain a stable bubbling flow in the impingers and to overcome the resistance of the gas meter

Sample Preparation and Storage


- ✓ Impingers solutions are transferred in HDPE bottles along with the rinses
- The first and second bottles have to be analysed, while the third only in the case ammonia breakthrough has occurred

NIOSH 6015/6016 – OSHA D188 Sampling



- ✓ Ammonia can be collected with solid sorbent tubes
- ✓ Pre-filtering is optional, according to the expected particular matter content
- ✓ A personal sampling pump (available also in ATEX version) can be used

Samples Preparation

STORE TUBES 35 days at 5°C 1 day after desorption

✓ The two sections of the tubes are desorbed in water separately

Analytical samples are analised along with field blanks

Concentration Range in Sampling Solutions

IMPINGERS METHOD

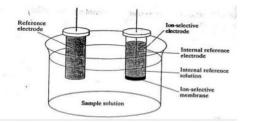
BIO-METH	ANE	SAMPLING		SOLUTION		
		rete	1 l/min	Volume	400 ml	
NH ₃ 10	*) mg/m3	time	30 min	C _{NH3 sol max}	1,36 mg/l	
		Volume	301	C _{NH3 sol min}	0,14 mg/l	
		NH ₃ tot.	0,3 mg			

SOLID SORBENT METHOD

BIO-METHANE				SAMPLING	SOLUTION		
			rete	0,2 l/min	Volume	10 ml	
NH ₃ 10 [*]	mg/m3	time	30 min	C _{NH3 sol max}	6,00 mg/l		
	10	111g/1113	Volume	61	C _{NH3 sol min}	3,00 mg/l	
			NH ₃ tot.	0,06 mg			

* Limit value in EN 16723-1

- The range depends on many factors: the concentration of ammonia in bio-methane, the sampling rate, the sampling time and the amount of solvent used
- If higher concentrations are reached they can be easily reduced by dilution, while higher sampling times and rates can be set when lower values are expected



Analytical Techniques

NESSLER'S REAGENT TEST

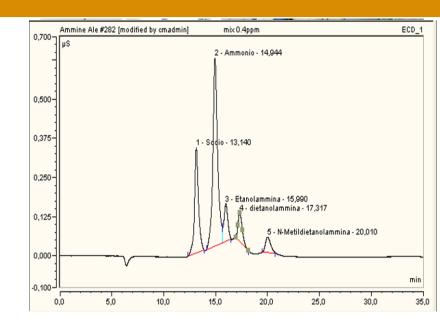
AMMONIA ION SELECTIVE ELECTRODE

typical range: 0.02 to 17000ppm.

- Ammonia can be analyzed by a colorimetric method using Nessler reagent. This method has significant interferences. A disadvantage is that only clear solutions can be processed
- Another method, having a good operative range, uses ammonia ion specific electrode, which does not discriminate between ammonia and amines

INNOVHUB STAZIONI SPERIMENTALI PER L'INDUSTRIA Innovazione e ricerca

IC Method

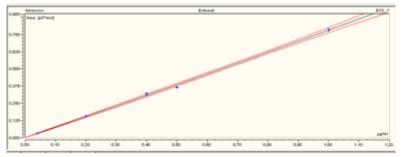

ION CHROMATOGRAPHY

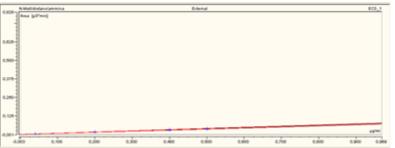
Analysis performed by ICS 2500 ion chromatographic system (Dionex) consisting of:

- gradient pump (GS50),
- a chromatographic oven (LC 25),
- electrochemical detector (ED50),
- CSRS-4-mm Cation Suppressor
- Column CS20 4x250 mm

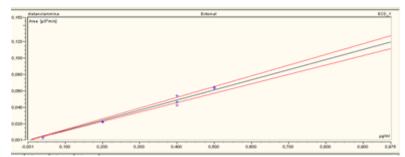
Analysis conditions:

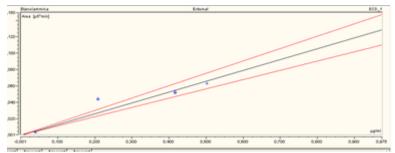
- oven temperature 30°C
- run time 35 min
- MSA 13 mM
- Flow 0.4 ml/min
- Suppressor Current 16 mA


- Ion Chromatography is a very common and straightforward method for quantifying ammonia in water solutions
- Possible interference is due to volatile amines peaks that can overlap the ammonia peak
- ✓ If amines peaks can be properly separated, IC may be a useful tool for quantifying ammonia and low MW amines in the same analysis



IC Calibrations


AMMONIA


N-METHYLETHANOLAMINE

DIETHANOLAMINE

ETHANOLAMINE

No.	Peak Name	Cal.Type	#Points	Rel.Std.Dev.	Coeff.Det.	Offset	Slope	H-V LOD	Curve
				%	%			µg/ml	
	1 <mark>Ammonium</mark>	Quad	11	3.5757	99.8	0	0.7541	n.a.	0.0267
	2 Ethanolamine	Lin	9	20.7011	85.5856	0	0.1319	n.a.	0
	3 Dietahnolamine	Lin	9	10.0566	97.7338	0	0.1225	n.a.	0
	4 N-Methildiethanolamine	ALin	8	4.234	99.6356	0	0.076	n.a.	0

INNOVHUB STAZIONI SPERIMENTALI PER L'INDUSTRIA Innovazione e ricerca

IC Repeatability

	Amount µg/ml	Amount µg/ml	Amount µg/ml	Amount µg/ml	
	Ammonio	Etanolammina	dietanolammina	N-Metildietanolammina	
test 1	0.23	0.28	0.09	0.15	
test 2	0.23	0.31	0.09	0.11	
test 3	0.22	0.27	0.08	0.15	
test 4	0.22	0.26	0.09	0.11	
test 5	0.22	0.25	0.07	0.15	
test 6	0.22	0.26	0.08	0.10	
test 7	0.22	0.26	0.08	0.14	
test 8	0.22	0.27	0.07	0.12	
test 9	0.22	0.27	0.09	0.15	
test 10	0.24	0.32	0.07	0.18	
average	0.23	0.27	0.08	0.13	
std dev	0.007	0.024	0.008	0.026	

✓ Good repeatability, at the lower concentration range, is achieved for ammonia

✓ An acceptable repeatability is observed also for other amines present in bio-methane

✓ Higher MW amines are not detectable in IC under the operating conditions used in these tests

INNOVHUB STAZIONI SPERIMENTALI PER L'INDUSTRIA Innovazione e ricerca

CONCLUSIONS

- Absorption techniques are an easy and low cost way to sample ammonia in bio-methane streams
- Several analytical techniques are available and well consolidated for the quantification of ammonia in solution
- Potentially any laboratory has the possibility to perform the analysis of ammonia in bio-methane adopting these techniques
- They represent a good solution for the characterization of biomethane in the field on a routine base
- IC is the more suited analytical technique to prevent interferences from other amines, if a good separation can be achieved
- IC is potentially useful for the simultaneous quantification of ammonia and low MW amines in bio-methane
- Further validation with standard cylinders have to be carried out before the end of the Project

For Further Information

Gabriele Migliavacca

Gariele.migliavacca@mi.camcom.it

www.innovhub-ssi.it

